ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlation between resistance fluctuations and temperature dependence of conductivity in graphene

70   0   0.0 ( 0 )
 نشر من قبل Viera Skakalova
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The weak temperature dependence of the resistance R(T) of monolayer graphene1-3 indicates an extraordinarily high intrinsic mobility of the charge carriers. Important complications are the presence of mobile scattering centres that strongly modify charge transport, and the presence of strong mesoscopic conductance fluctuations that, in graphene, persist to relatively high temperatures4,5. In this Letter, we investigate the surprisingly varied changes in resistance that we find in graphene flakes as temperature is lowered below 70 K. We propose that these changes in R(T) arise from the temperature dependence of the scattered electron wave interference that causes the resistance fluctuations. Using the field effect transistor configuration, we verify this explanation in detail from measurements of R(T) by tuning to different gate voltages corresponding to particular features of the resistance fluctuations. We propose simple expressions that model R(T) at both low and high charge carrier densities.

قيم البحث

اقرأ أيضاً

The low-temperature thermal conductivity in polycrystalline graphene is theoretically studied. The contributions from three branches of acoustic phonons are calculated by taking into account scattering on sample borders, point defects and grain bound aries. Phonon scattering due to sample borders and grain boundaries is shown to result in a $T^{alpha}$-behaviour in the thermal conductivity where $alpha$ varies between 1 and 2. This behaviour is found to be more pronounced for nanosized grain boundaries. PACS: 65.80.Ck, 81.05.ue, 73.43.Cd
We investigated experimentally the high-temperature electrical resistance of graphene interconnects. The test structures were fabricated using the focused ion beam from the single and bi-layer graphene produced by mechanical exfoliation. It was found that as temperature increases from 300 to 500K the resistance of the single- and bi-layer graphene interconnects drops down by 30% and 70%, respectively. The quenching and temperature dependence of the resistance were explained by the thermal generation of the electron-hole pairs and acoustic phonon scattering. The obtained results are important for the proposed applications of graphene as interconnects in integrated circuits.
We investigated thermal conductivity of free-standing reduced graphene oxide films subjected to a high-temperature treatment of up to 1000 C. It was found that the high-temperature annealing dramatically increased the in-plane thermal conductivity, K , of the films from 3 W/mK to 61 W/mK at room temperature. The cross-plane thermal conductivity, Kc, revealed an interesting opposite trend of decreasing to a very small value of 0.09 W/mK in the reduced graphene oxide films annealed at 1000 C. The obtained films demonstrated an exceptionally strong anisotropy of the thermal conductivity, K/Kc ~ 675, which is substantially larger even than in the high-quality graphite. The electrical resistivity of the annealed films reduced to 1 - 19 Ohms/sq. The observed modifications of the in-plane and cross-plane thermal conductivity components resulting in an unusual K/Kc anisotropy were explained theoretically. The theoretical analysis suggests that K can reach as high as ~500 W/mK with the increase in the sp2 domain size and further reduction of the oxygen content. The strongly anisotropic heat conduction properties of these films can be useful for applications in thermal management.
328 - Zhao Wang , N. Mingo 2011
We theoretically compute the thermal conductivity of SiGe alloy nanowires as a function of nanowire diameter, alloy concentration, and temperature, obtaining a satisfactory quantitative agreement with experimental results. Our results account for the weaker diameter dependence of the thermal conductivity recently observed in Si$_{1-x}$Ge$_x$ nanowires ($x<0.1$), as compared to pure Si nanowires. We also present calculations in the full range of alloy concentrations, $0 leq x leq 1$, which may serve as a basis for comparison with future experiments on high alloy concentration nanowires.
We have investigated the domain wall resistance for two types of domain walls in a (Ga,Mn)As Hall bar with perpendicular magnetization. A sizeable positive intrinsic DWR is inferred for domain walls that are pinned at an etching step, which is quite consistent with earlier observations. However, much lower intrinsic domain wall resistance is obtained when domain walls are formed by pinning lines in unetched material. This indicates that the spin transport across a domain wall is strongly influenced by the nature of the pinning.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا