ترغب بنشر مسار تعليمي؟ اضغط هنا

Second-Order Assortative Mixing in Social Networks

487   0   0.0 ( 0 )
 نشر من قبل Shi Zhou Dr.
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a social network, the number of links of a node, or node degree, is often assumed as a proxy for the nodes importance or prominence within the network. It is known that social networks exhibit the (first-order) assortative mixing, i.e. if two nodes are connected, they tend to have similar node degrees, suggesting that people tend to mix with those of comparable prominence. In this paper, we report the second-order assortative mixing in social networks. If two nodes are connected, we measure the degree correlation between their most prominent neighbours, rather than between the two nodes themselves. We observe very strong second-order assortative mixing in social networks, often significantly stronger than the first-order assortative mixing. This suggests that if two people interact in a social network, then the importance of the most prominent person each knows is very likely to be the same. This is also true if we measure the average prominence of neighbours of the two people. This property is weaker or negative in non-social networks. We investigate a number of possible explanations for this property. However, none of them was found to provide an adequate explanation. We therefore conclude that second-order assortative mixing is a new property of social networks.



قيم البحث

اقرأ أيضاً

Inspired by the analysis of several empirical online social networks, we propose a simple reaction-diffusion-like coevolving model, in which individuals are activated to create links based on their states, influenced by local dynamics and their own i ntention. It is shown that the model can reproduce the remarkable properties observed in empirical online social networks; in particular, the assortative coefficients are neutral or negative, and the power law exponents are smaller than 2. Moreover, we demonstrate that, under appropriate conditions, the model network naturally makes transition(s) from assortative to disassortative, and from sparse to dense in their characteristics. The model is useful in understanding the formation and evolution of online social networks.
In this paper we present a new version of a network growth model, generalized in order to describe the behavior of social networks. The case of study considered is the preprint archive at cul.arxiv.org. Each node corresponds to a scientist, and a lin k is present whenever two authors wrote a paper together. This graph is a nice example of degree-assortative network, that is to say a network where sites with similar degree are connected each other. The model presented is one of the few able to reproduce such behavior, giving some insight on the microscopic dynamics at the basis of the graph structure.
Spatially embedded networks have attracted increasing attention in the last decade. In this context, new types of network characteristics have been introduced which explicitly take spatial information into account. Among others, edge directionality p roperties have recently gained particular interest. In this work, we investigate the applicability of mean edge direction, anisotropy and local mean angle as geometric characteristics in complex spherical networks. By studying these measures, both analytically and numerically, we demonstrate the existence of a systematic bias in spatial networks where individual nodes represent different shares on a spherical surface, and describe a strategy for correcting for this effect. Moreover, we illustrate the application of the mentioned edge directionality properties to different examples of real-world spatial networks in spherical geometry (with or without the geometric correction depending on each specific case), including functional climate networks, transportation and trade networks. In climate networks, our approach highlights relevant patterns like large-scale circulation cells, the El Ni~{n}o--Southern Oscillation and the Atlantic Ni~{n}o. In an air transportation network, we are able to characterize distinct air transportation zones, while we confirm the important role of the European Union for the global economy by identifying convergent edge directionality patterns in the world trade network.
We show that qualitatively different epidemic-like processes from distinct societal domains (finance, social and commercial blockbusters, epidemiology) can be quantitatively understood using the same unifying conceptual framework taking into account the interplay between the timescales of the grouping and fragmentation of social groups together with typical epidemic transmission processes. Different domain-specific empirical infection profiles, featuring multiple resurgences and abnormal decay times, are reproduced simply by varying the timescales for group formation and individual transmission. Our model emphasizes the need to account for the dynamic evolution of multi-connected networks. Our results reveal a new minimally-invasive dynamical method for controlling such outbreaks, help fill a gap in existing epidemiological theory, and offer a new understanding of complex system response functions.
In order to model volatile real-world network behavior, we analyze phase-flipping dynamical scale-free network in which nodes and links fail and recover. We investigate how stochasticity in a parameter governing the recovery process affects phase-fli pping dynamics, and find the probability that no more than q% of nodes and links fail. We derive higher moments of the fractions of active nodes and active links, $f_n(t)$ and $f_{ell}(t)$, and define two estimators to quantify the level of risk in a network. We find hysteresis in the correlations of $f_n(t)$ due to failures at the node level, and derive conditional probabilities for phase-flipping in networks. We apply our model to economic and traffic networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا