ﻻ يوجد ملخص باللغة العربية
We introduce an extension, indexed by a partially ordered set P and cardinal numbers k,l, denoted by (k,l)-->P, of the classical relation (k,n,l)--> r in infinite combinatorics. By definition, (k,n,l)--> r holds, if every map from the n-element subsets of k to the subsets of k with less than l elements has a r-element free set. For example, Kuratowskis Free Set Theorem states that (k,n,l)-->n+1 holds iff k is larger than or equal to the n-th cardinal successor l^{+n} of the infinite cardinal k. By using the (k,l)-->P framework, we present a self-contained proof of the first authors result that (l^{+n},n,l)-->n+2, for each infinite cardinal l and each positive integer n, which solves a problem stated in the 1985 monograph of Erdos, Hajnal, Mate, and Rado. Furthermore, by using an order-dimension estimate established in 1971 by Hajnal and Spencer, we prove the relation (l^{+(n-1)},r,l)-->2^m, where m is the largest integer below (1/2)(1-2^{-r})^{-n/r}, for every infinite cardinal l and all positive integers n and r with r larger than 1 but smaller than n. For example, (aleph_{210},4,aleph_0)-->32,768. Other order-dimension estimates yield relations such as (aleph_{109},4,aleph_0)--> 257 (using an estimate by Furedi and Kahn) and (aleph_7,4,aleph_0)-->10 (using an exact estimate by Dushnik).
Let $mathrm{G}$ be a subgroup of the symmetric group $mathfrak S(U)$ of all permutations of a countable set $U$. Let $overline{mathrm{G}}$ be the topological closure of $mathrm{G}$ in the function topology on $U^U$. We initiate the study of the poset
A classical result by Rado characterises the so-called partition-regular matrices $A$, i.e. those matrices $A$ for which any finite colouring of the positive integers yields a monochromatic solution to the equation $Ax=0$. We study the {sl asymmetric
The abstract induced subgraph poset of a graph is the isomorphism class of the induced subgraph poset of the graph, suitably weighted by subgraph counting numbers. The abstract bond lattice and the abstract edge-subgraph poset are defined similarly b
The maximum size, $La(n,P)$, of a family of subsets of $[n]={1,2,...,n}$ without containing a copy of $P$ as a subposet, has been intensively studied. Let $P$ be a graded poset. We say that a family $mathcal{F}$ of subsets of $[n]={1,2,...,n}$ cont
The partition lattice and noncrossing partition lattice are well studied objects in combinatorics. Given a graph $G$ on vertex set ${1,2,dots, n}$, its bond lattice, $L_G$, is the subposet of the partition lattice formed by restricting to the partiti