ﻻ يوجد ملخص باللغة العربية
We consider a possible mechanism of thermalization of nucleons in relativistic heavy-ion collisions. Our model belongs, to a certain degree, to the transport ones; we investigate the evolution of the system created in nucleus-nucleus collision, but we parametrize this development by the number of collisions of every particle during evolution rather than by the time variable. We based on the assumption that the nucleon momentum transfer after several nucleon-nucleon (-hadron) elastic and inelastic collisions becomes a random quantity driven by a proper distribution. This randomization results in a smearing of the nucleon momenta about their initial values and, as a consequence, in their partial isotropization and thermalization. The trial evaluation is made in the framework of a toy model. We show that the proposed scheme can be used for extraction of the physical information from experimental data on nucleon rapidity distribution.
We propose a model for isotropization and corresponding thermalization in a nucleon system created in the collision of two nuclei. The model is based on the assumption: during the fireball evolution, two-particle elastic and inelastic collisions give
Initial geometrical distribution and fluctuation can affect the collective expansion in relativistic heavy-ion collisions. This effect may be more evident in small system (such as B + B) than in large one (Pb + Pb). This work presents the collision s
We propose a mechanism of thermalization of nucleons in relativistic nucleus-nucleus collisions. Our model belongs, to a certain degree, to the transport ones; we consider the evolution of the system, but we parametrize this development by the number
We study charm production in ultra-relativistic heavy-ion collisions by using the Parton-Hadron-String Dynamics (PHSD) transport approach. The initial charm quarks are produced by the PYTHIA event generator tuned to fit the transverse momentum spectr
Despite the fact that a system created in relativistic heavy ion collisions is an isolated quantum system, which cannot increase its entropy in the course of unitary quantum evolution, hydrodynamical analysis of experimental data seems to indicate th