ﻻ يوجد ملخص باللغة العربية
The choice of impedance used to shunt a Josephson junction determines if the charge transferred through the circuit is quantized: a capacitive shunt renders the charge discrete, whereas an inductive shunt leads to continuous charge. This discrepancy leads to a paradox in the limit of large inductances L. We show that while the energy spectra of the capacitively and inductively shunted junction are vastly different, their high-frequency responses become identical for large L. Inductive shunting thus opens the possibility to observe charging effects unimpeded by charge noise.
We consider a superconducting coplanar waveguide resonator where the central conductor is interrupted by a series of uniformly spaced Josephson junctions. The device forms an extended medium that is optically nonlinear on the single photon level with
We consider a two-dimensional electron gas with strong spin-orbit coupling contacted by two superconducting leads, forming a Josephson junction. We show that in the presence of an in-plane Zeeman field the quasi-one-dimensional region between the two
The ac Josephson effect in a ferromagnetic Josephson junction, which is composed of two superconductors separated by a ferromagnetic metal (FM), is studied by a tunneling Hamiltonian and Greens function method. We obtain two types of superconducting
We show that the time reversal symmetry inevitably breaks in a superconducting Josephson junction formed by two superconductors with different pairing symmetries dubbed as i-Josephson junction. While the leading conventional Josephson coupling vanish
We investigate finite-size quantum effects in the dynamics of $N$ bosonic particles which are tunneling between two sites adopting the two-site Bose-Hubbard model. By using time-dependent atomic coherent states (ACS) we extend the standard mean-field