ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-IR Galaxy Counts and Evolution from the Wide-Field ALHAMBRA survey

155   0   0.0 ( 0 )
 نشر من قبل David Cristobal
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The ALHAMBRA survey aims to cover 4 square degrees using a system of 20 contiguous, equal width, medium-band filters spanning the range 3500 A to 9700 A plus the standard JHKs filters. Here we analyze deep near-IR number counts of one of our fields (ALH08) for which we have a relatively large area (0.5 square degrees) and faint photometry (J=22.4, H=21.3 and K=20.0 at the 50% of recovery efficiency for point-like sources). We find that the logarithmic gradient of the galaxy counts undergoes a distinct change to a flatter slope in each band: from 0.44 at [17.0, 18.5] to 0.34 at [19.5, 22.0] for the J band; for the H band 0.46 at [15.5, 18.0] to 0.36 at [19.0, 21.0], and in Ks the change is from 0.53 in the range [15.0, 17.0] to 0.33 in the interval [18.0, 20.0]. These observations together with faint optical counts are used to constrain models that include density and luminosity evolution of the local type-dependent luminosity functions. Our models imply a decline in the space density of evolved early-type galaxies with increasing redshift, such that only 30% - 50% of the bulk of the present day red-ellipticals was already in place at z~1.



قيم البحث

اقرأ أيضاً

134 - P. Arnalte-Mur 2013
We study the clustering of galaxies as function of luminosity and redshift in the range $0.35 < z < 1.25$ using data from the Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) survey. The ALHAMBRA data used in this work cov er $2.38 mathrm{deg}^2$ in 7 independent fields, after applying a detailed angular selection mask, with accurate photometric redshifts, $sigma_z lesssim 0.014 (1+z)$, down to $I_{rm AB} < 24$. Given the depth of the survey, we select samples in $B$-band luminosity down to $L^{rm th} simeq 0.16 L^{*}$ at $z = 0.9$. We measure the real-space clustering using the projected correlation function, accounting for photometric redshifts uncertainties. We infer the galaxy bias, and study its evolution with luminosity. We study the effect of sample variance, and confirm earlier results that the COSMOS and ELAIS-N1 fields are dominated by the presence of large structures. For the intermediate and bright samples, $L^{rm med} gtrsim 0.6L^{*}$, we obtain a strong dependence of bias on luminosity, in agreement with previous results at similar redshift. We are able to extend this study to fainter luminosities, where we obtain an almost flat relation, similar to that observed at low redshift. Regarding the evolution of bias with redshift, our results suggest that the different galaxy populations studied reside in haloes covering a range in mass between $log_{10}[M_{rm h}/(h^{-1}mathrm{M}_{odot})] gtrsim 11.5$ for samples with $L^{rm med} simeq 0.3 L^{*}$ and $log_{10}[M_{rm h}/(h^{-1}mathrm{M}_{odot})] gtrsim 13.0$ for samples with $L^{rm med} simeq 2 L^{*}$, with typical occupation numbers in the range of $sim 1 - 3$ galaxies per halo.
We study the clustering of galaxies as a function of spectral type and redshift in the range $0.35 < z < 1.1$ using data from the Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) survey. The data cover 2.381 deg$^2$ in 7 f ields, after applying a detailed angular selection mask, with accurate photometric redshifts [$sigma_z < 0.014(1+z)$] down to $I_{AB} < 24$. From this catalog we draw five fixed number density, redshift-limited bins. We estimate the clustering evolution for two different spectral populations selected using the ALHAMBRA-based photometric templates: quiescent and star-forming galaxies. For each sample, we measure the real-space clustering using the projected correlation function. Our calculations are performed over the range $[0.03,10.0] h^{-1}$ Mpc, allowing us to find a steeper trend for $r_p lesssim 0.2 h^{-1}$ Mpc, which is especially clear for star-forming galaxies. Our analysis also shows a clear early differentiation in the clustering properties of both populations: star-forming galaxies show weaker clustering with evolution in the correlation length over the analysed redshift range, while quiescent galaxies show stronger clustering already at high redshifts, and no appreciable evolution. We also perform the bias calculation where similar segregation is found, but now it is among the quiescent galaxies where a growing evolution with redshift is clearer. These findings clearly corroborate the well known colour-density relation, confirming that quiescent galaxies are mainly located in dark matter halos that are more massive than those typically populated by star-forming galaxies.
We present a catalogue of 348 galaxy clusters and groups with $0.2<z<1.2$ selected in the 2.78 $deg^2$ ALHAMBRA Survey. The high precision of our photometric redshifts, close to $1%$, and the wide spread of the seven ALHAMBRA pointings ensure that th is catalogue has better mass sensitivity and is less affected by cosmic variance than comparable samples. The detection has been carried out with the Bayesian Cluster Finder (BCF), whose performance has been checked in ALHAMBRA-like light-cone mock catalogues. Great care has been taken to ensure that the observable properties of the mocks photometry accurately correspond to those of real catalogues. From our simulations, we expect to detect galaxy clusters and groups with both $70%$ completeness and purity down to dark matter halo masses of $M_hsim3times10^{13}rm M_{odot}$ for $z<0.85$. Cluster redshifts are expected to be recovered with $sim0.6%$ precision for $z<1$. We also expect to measure cluster masses with $sigma_{M_h|M^*_{CL}}sim0.25-0.35, dex$ precision down to $sim3times10^{13}rm M_{odot}$, masses which are $50%$ smaller than those reached by similar work. We have compared these detections with previous optical, spectroscopic and X-rays work, finding an excellent agreement with the rates reported from the simulations. We have also explored the overall properties of these detections such as the presence of a colour-magnitude relation, the evolution of the photometric blue fraction and the clustering of these sources in the different ALHAMBRA fields. Despite the small numbers, we observe tentative evidence that, for a fixed stellar mass, the environment is playing a crucial role at lower redshifts (z$<$0.5).
114 - E. Laurikainen , H. Salo , R. Buta 2011
A review of the results of the Near-IR S0 galaxy Survey (NIRS0S) is presented. NIRS0S is a magnitude (mB 12.5 mag) and inclination (< 65o) limited sample of 200 nearby galaxies, mainly S0s. It uses deep Ks -band images, typically reaching a surface b rightness of 23.5 mag arcsec^(-2) . Detailed visual and photometric classifications were made, for the first time coding also the lenses in a systematic manner. As a comparison sample, a similar sized spiral galaxy sample with similar image quality was used. The main emphasis were to study whether the S0s are former spirals in which star formation has been ceased, and also, how robust are bars in galaxies. Based on our analysis the Hubble sequence was revisited: following the early idea by van den Bergh we suggested that the S0s are spread throughout the Hubble sequence in parallel tuning forks as spirals (S0a, S0b, S0c etc.). This is evidenced by our improved bulge-to-total (B/T) flux ratios, reaching as small values as typically found in late-type spirals. The properties of bulges and disks in S0s were found to be similar to those in spirals. Also, the masses and scale parameters of the bulges and disks were found to be coupled. Bars were found to be fairly robust both in S0s and spirals, but inspite of that bars might evolve significantly within the Hubble sequence.
We present preliminary results from a wide field near-IR imaging survey that uses the Cambridge InfraRed Survey Instrument (CIRSI) on the 2.5m Isaac Newton Telescope (INT). CIRSI is a JH-band mosaic imager that contains 4 Rockwell 1024$^{2}$ HgCdTe d etectors (the largest IR camera in existence), allowing us to survey approximately 4 deg^2 per night to H ~ 19. Combining CIRSI observations with the deep optical imaging from the INT Wide Field Survey, we demonstrate a reddening independent quasar selection technique based on the (g - z) / (z - H) color diagram.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا