ﻻ يوجد ملخص باللغة العربية
We report the detection of X-ray emission from the jet-driving symbiotic star MWC 560. We observed MWC 560 with XMM-Newton for 36 ks. We fitted the spectra from the EPIC pn, MOS1 and MOS2 instruments with XSPEC and examined the light curves with the package XRONOS. The spectrum can be fitted with a highly absorbed hard X-ray component from an optically-thin hot plasma, a Gaussian emission line with an energy of 6.1 keV and a less absorbed soft thermal component. The best fit is obtained with a model in which the hot component is produced by optically thin thermal emission from an isobaric cooling flow with a maximum temperature of 61 keV, which might be created inside an optically-thin boundary layer on the surface of the accreting with dwarf. The derived parameters of the hard component detected in MWC 560 are in good agreement with similar objects as CH Cyg, SS7317, RT Cru and T CrB, which all form a new sub-class of symbiotic stars emitting hard X-rays. Our previous numerical simulations of the jet in MWC 560 showed that it should produce detectable soft X-ray emission. We infer a temperature of 0.17 keV for the observed soft component, i.e. less than expected from our models. The total soft X-ray flux (i.e. at < 3 keV) is more than a factor 100 less than predicted for the propagating jet soon after its birth (<0.3 yr), but consistent with the value expected due its decrease with age. The ROSAT upper limit is also consistent with such a decrease. We find aperiodic or quasi-periodic variability on timescales of minutes and hours, but no periodic rapid variability. All results are consistent with an accreting white dwarf powering the X-ray emission and the existence of an optically-thin boundary layer around it.
We analyse optical photometric data of short term variability (flickering) of the accreting white dwarf in the jet-ejecting symbiotic star MWC560. The observations are obtained in 17 nights during the period November 2011 - October 2019. The colour-m
Hen 3-1341 is a symbiotic binary system consisting of a white dwarf and a red giant star that is one of about ten symbiotics that show hints of jets. The bipolar jets have been detected through displaced components of emission lines during its outbur
We report the detection of X-ray emission from the symbiotic star V1329 Cyg with XMM-Newton. The spectrum from the EPIC pn, MOS1 and MOS2 instruments consists of a two-temperature plasma with k T = 0.11 keV and k T = 0.93 keV. Unlike the vast majorit
We performed hydrodynamical simulations with and without radiative cooling of jet models with parameters representative for the symbiotic system MWC 560. For symbiotic systems we have to perform jet simulations of a pulsed underdense jet in a high de
MWC 560 (= V694 Mon) is the only known Symbiotic Star system in which the jet axis is practically parallel to the line of sight. Therefore this system is predestinated to study the dynamical evolution and the propagation of stellar jets. Spectroscopi