ﻻ يوجد ملخص باللغة العربية
We report the discovery of extremely broad 21-cm HI absorption (FWZI ~1600 km/s) detected with the Westerbork Synthesis Radio Telescope in the radio source 4C37.11 (B2 0402+379). This object has been claimed to host a super-massive binary black hole (Rodriguez et al. 2006). The main features in the absorption profile are two components, separated by ~1100 km/s. The HI absorption in 4C37.11 is unusual because it is the first case where such broad absorption is found to be centred on the systemic velocity of the host galaxy and not asymmetric and blueshifted as is seen in all other galaxies with broad HI absorption. Given the large width of the absorption, we suggest that a possible explanation for the extreme properties of the HI absorption is that it is the kinematic signature of a binary black hole. If this interpretation is correct, the combined black hole mass derived from the absorption profile is consistent with that derived from the luminosity of the spheroid. If the broad absorption is indeed due to a binary black hole, this finding confirms the importance of the gaseous component in the merging process of supermassive black holes.
With the Australian Square Kilometre Array Pathfinder (ASKAP) we monitored the black hole candidate X-ray binary MAXI J1535--571 over seven epochs from 21 September to 2 October 2017. Using ASKAP observations, we studied the HI absorption spectrum fr
We present HI absorption spectra of the black hole candidate X-ray binary (XRB) MAXI J1348-630 using the Australian Square Kilometre Array Pathfinder (ASKAP) and MeerKAT. The ASKAP HI spectrum shows a maximum negative radial velocity (with respect to
We present results of multi-frequency VLBA observations of the compact symmetric object (CSO) 0402+379. The parsec-scale morphology of 0402+379 allows us to confirm it as a CSO, while VLA data clearly show the presence of kiloparsec-scale structure.
PG1302-102 is thought to be a supermassive binary black hole (BBH) system according to the periodical variations of its optical and UV photometry, which may be interpreted as being due to the relativistic Doppler boosting of the emission mainly from
In this manuscript, an interesting blue Active Galactic Nuclei (AGN) SDSS J154751.94+025550 (=SDSS J1547) is reported with very different line profiles of broad Balmer emission lines: double-peaked broad H$beta$ but single-peaked broad H$alpha$. SDSS