ترغب بنشر مسار تعليمي؟ اضغط هنا

Square root meadows

477   0   0.0 ( 0 )
 نشر من قبل Inge Bethke
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Let Q_0 denote the rational numbers expanded to a meadow by totalizing inversion such that 0^{-1}=0. Q_0 can be expanded by a total sign function s that extracts the sign of a rational number. In this paper we discuss an extension Q_0(s ,sqrt) of the signed rationals in which every number has a unique square root.



قيم البحث

اقرأ أيضاً

A meadow is a commutative ring with a total inverse operator satisfying 0^{-1}=0. We show that the class of finite meadows is the closure of the class of Galois fields under finite products. As a corollary, we obtain a unique representation of minimal finite meadows in terms of finite prime fields.
92 - Mou Yan , Xueqin Huang , Li Luo 2020
Square-root topological states are new topological phases, whose topological property is inherited from the square of the Hamiltonian. We realize the first-order and second-order square-root topological insulators in phononic crystals, by putting add itional cavities on connecting tubes in the acoustic Su-Schrieffer-Heeger model and the honeycomb lattice, respectively. Because of the square-root procedure, the bulk gap of the squared Hamiltonian is doubled. In both two bulk gaps, the square-root topological insulators possess multiple localized modes, i.e., the end and corner states, which are evidently confirmed by our calculations and experimental observations. We further propose a second-order square-root topological semimetal by stacking the decorated honeycomb lattice to three dimensions.
A combination of program algebra with the theory of meadows is designed leading to a theory of computation in algebraic structures which use in addition to a zero test and copying instructions the instruction set ${x Leftarrow 0, x Leftarrow 1, xLeft arrow -x, xLeftarrow x^{-1}, xLeftarrow x+y, xLeftarrow xcdot y}$. It is proven that total functions on cancellation meadows can be computed by straight-line programs using at most 5 auxiliary variables. A similar result is obtained for signed meadows.
The problem of designing an optimal weighted voting system for the two-tier voting, applicable in the case of the Council of Ministers of the European Union (EU), is investigated. Various arguments in favour of the square root voting system, where th e voting weights of member states are proportional to the square root of their population are discussed and a link between this solution and the random walk in the one-dimensional lattice is established. It is known that the voting power of every member state is approximately equal to its voting weight, if the threshold q for the qualified majority in the voting body is optimally chosen. We analyze the square root voting system for a generic union of M states and derive in this case an explicit approximate formula for the level of the optimal threshold: q simeq 1/2+1/sqrt{{pi} M}. The prefactor 1/sqrt{{pi}} appears here as a result of averaging over the ensemble of unions with random populations.
We prove the Kato conjecture for elliptic operators, $L=- ablacdotleft((mathbf A+mathbf D) abla right)$, with $mathbf A$ a complex measurable bounded coercive matrix and $mathbf D$ a measurable real-valued skew-symmetric matrix in $mathbb{R}^n$ with entries in $BMO(mathbb{R}^n)$;, i.e., the domain of $sqrt{L},$ is the Sobolev space $dot H^1(mathbb{R}^n)$ in any dimension, with the estimate $|sqrt{L}, f|_2lesssim | abla f|_2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا