ﻻ يوجد ملخص باللغة العربية
We report on magnetic characteristics in four-layered high-T_c superconductors Ba_2Ca_3Cu_4O_8(F_yO_{1-y})_2 with apical fluorine through Cu- and F-NMR measurements. The substitution of oxygen for fluorine at the apical site increases the carrier density (N_h) and T_c from 55 K up to 102 K. The NMR measurements reveal that antiferromagnetic order, which can uniformly coexist with superconductivity, exists up to N_h = 0.15, which is somewhat smaller than N_h = 0.17 being the quantum critical point (QCP) for five-layered compounds. The fact that the QCP for the four-layered compounds moves to a region of lower carrier density than for five-layered ones ensures that the decrease in the number of CuO_2 layers makes an interlayer magnetic coupling weaker.
We report on the observation of high-T_c superconductivity (SC) emerging with the background of an antiferromagnetic (AFM) order in the five-layered cuprate Ba_2Ca_4Cu_5O_10(F,O)_2 through 19F-NMR and zero-field Cu-NMR studies. The measurements of sp
We report on the phase diagram of antiferromagnetism (AFM) and superconductivity (SC) in three-layered Ba_2Ca_2Cu_3O_6(F,O)_2 by means of Cu-NMR measurements. It is demonstrated that AFM and SC uniformly coexist in three-layered compounds as well as
In this work we report a systematic study of electrical current effects on superconducting properties of granular Y$_{1-x}$Pr$_{x}$Ba$_{2}$Cu$_{3}$O$_{7-delta}$ samples with x close to the critical Pr concentration above which the superconductivity v
The notion of a finite pairing interaction energy range suggested by Nam, results in some states at the Fermi level not participating in pairings when there are scattering centers such as impurities. The fact that not all states at the Fermi level pa
We report Cu-NMR/NQR and F-NMR studies on the multilayered high-T_c copper oxides Ba_2Ca_{n-1}Cu_nO_{2n}F_2 with n=2,3,4, where n is the number of CuO_2 planes. It is revealed that bi-layered Ba_2CaCu_2O_4F_2 is an underdoped superconductor with hole