ﻻ يوجد ملخص باللغة العربية
A caesium fountain clock is operated utilizing a microwave oscillator that derives its frequency stability from a stable laser by means of a fiber-laser femtosecond frequency comb. This oscillator is based on the technology developed for optical clocks and replaces the quartz based microwave oscillator commonly used in fountain clocks. As a result, a significant decrease of the frequency instability of the fountain clock is obtained, reaching 0.74E-14 at 100 s averaging time. We could demonstrate that for a significant range of detected atom numbers the instability is limited by quantum projection noise only, and that for the current status of this fountain clock the new microwave source poses no limit on the achievable frequency instability.
We stabilise a microwave oscillator at 9.6 GHz to an optical clock laser at 344 THz by using a fibre-based femtosecond laser frequency comb as a transfer oscillator. With a second frequency comb we measure independently the instability of the microwa
We report the operation of a dual Rb/Cs atomic fountain clock. 133Cs and 87Rb atoms are cooled, launched, and detected simultaneously in LNE-SYRTEs FO2 double fountain. The dual clock operation occurs with no degradation of either the stability or th
We report loading of laser-cooled caesium atoms into a hollow-core photonic-bandgap fiber and confining the atoms in the fibers 7 $mu m$ diameter core with a magic-wavelength dipole trap at $sim$935 nm. The use of the magic wavelength removes the AC-
We evaluate the frequency error from distributed cavity phase in the caesium fountain clock PTB-CSF2 at the Physikalisch-Technische Bundesanstalt with a combination of frequency measurements and ab initio calculations. The associated uncertainty is 1
We present a trajectory dynamically tracing compensation method to smooth the spatial fluctuation of the static magnetic field (C-field) that provides a quantization axis in the fountain clock. The C-field coil current is point-to-point adjusted in a