ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Computation of Matrices of Traces and Radicals of Ideals

111   0   0.0 ( 0 )
 نشر من قبل Bernard Mourrain
 تاريخ النشر 2009
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $f_1,...,f_s in mathbb{K}[x_1,...,x_m]$ be a system of polynomials generating a zero-dimensional ideal $I$, where $mathbb{K}$ is an arbitrary algebraically closed field. We study the computation of matrices of traces for the factor algebra $A := CC[x_1, ..., x_m]/ I$, i.e. matrices with entries which are trace functions of the roots of $I$. Such matrices of traces in turn allow us to compute a system of multiplication matrices ${M_{x_i}|i=1,...,m}$ of the radical $sqrt{I}$. We first propose a method using Macaulay type resultant matrices of $f_1,...,f_s$ and a polynomial $J$ to compute moment matrices, and in particular matrices of traces for $A$. Here $J$ is a polynomial generalizing the Jacobian. We prove bounds on the degrees needed for the Macaulay matrix in the case when $I$ has finitely many projective roots in $mathbb{P}^m_CC$. We also extend previous results which work only for the case where $A$ is Gorenstein to the non-Gorenstein case. The second proposed method uses Bezoutian matrices to compute matrices of traces of $A$. Here we need the assumption that $s=m$ and $f_1,...,f_m$ define an affine complete intersection. This second method also works if we have higher dimensional components at infinity. A new explicit description of the generators of $sqrt{I}$ are given in terms of Bezoutians.



قيم البحث

اقرأ أيضاً

110 - Monique Laurent 2008
In this note we prove a generalization of the flat extension theorem of Curto and Fialkow for truncated moment matrices. It applies to moment matrices indexed by an arbitrary set of monomials and its border, assuming that this set is connected to 1. When formulated in a basis-free setting, this gives an equivalent result for truncated Hankel operators.
In this article we associate to every lattice ideal $I_{L,rho}subset K[x_1,..., x_m]$ a cone $sigma $ and a graph $G_{sigma}$ with vertices the minimal generators of the Stanley-Reisner ideal of $sigma $. To every polynomial $F$ we assign a subgraph $G_{sigma}(F)$ of the graph $G_{sigma}$. Every expression of the radical of $I_{L,rho}$, as a radical of an ideal generated by some polynomials $F_1,..., F_s$ gives a spanning subgraph of $G_{sigma}$, the $cup_{i=1}^s G_{sigma}(F_i)$. This result provides a lower bound for the minimal number of generators of $I_{L,rho}$ and therefore improves the generalized Krulls principal ideal theorem for lattice ideals. But mainly it provides lower bounds for the binomial arithmetical rank and the $A$-homogeneous arithmetical rank of a lattice ideal. Finally we show, by a family of examples, that the bounds given are sharp.
202 - Victor Kaftal 2007
This article - a part of a multipaper project investigating arithmetic mean ideals - investigates the codimension of commutator spaces [I, B(H)] of operator ideals on a separable Hilbert space, i.e., ``How many traces can an ideal support? We conject ure that the codimension can be only zero, one, or infinity. Using the arithmetic mean (am) operations on ideals introduced by Dykema, Figiel, Weiss, and Wodzicki, and the analogous am operations at infinity that we develop in this article, the conjecture is proven for all ideals not contained in the largest am-infinity stable ideal and not containing the smallest am-stable ideal. It is also proven for all soft-edged ideals (i.e., I= IK(H)) and all soft-complemented ideals (i.e., I= I/K(H)), which include many classical operator ideals. In the process, we prove that an ideal of trace class operators supports a unique trace (up to scalar multiples) if and only if it is am-infinity stable and that, for a principal ideal, am-infinity stability is equivalent to regularity at infinity of the sequence of s-numbers of the generator. Furthermore, we apply trace extension methods to two problems on elementary operators studied by V. Shulman and to Fuglede-Putnam type problems of the second author.
120 - Paolo Lella 2012
Borel-fixed ideals play a key role in the study of Hilbert schemes. Indeed each component and each intersection of components of a Hilbert scheme contains at least one Borel-fixed point, i.e. a point corresponding to a subscheme defined by a Borel-fi xed ideal. Moreover Borel-fixed ideals have good combinatorial properties, which make them very interesting in an algorithmic perspective. In this paper, we propose an implementation of the algorithm computing all the saturated Borel-fixed ideals with number of variables and Hilbert polynomial assigned, introduced from a theoretical point of view in the paper Segment ideals and Hilbert schemes of points, Discrete Mathematics 311 (2011).
We present algorithms and heuristics to compute the characteristic polynomial of a matrix given its minimal polynomial. The matrix is represented as a black-box, i.e., by a function to compute its matrix-vector product. The methods apply to matrices either over the integers or over a large enough finite field. Experiments show that these methods perform efficiently in practice. Combined in an adaptive strategy, these algorithms reach significant speedups in practice for some integer matrices arising in an application from graph theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا