ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct Role of Structural Dynamics in Electron-Lattice Coupling of Superconducting Cuprates

386   0   0.0 ( 0 )
 نشر من قبل Fabrizio Carbone Dr
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The mechanism of electron pairing in high-temperature superconductors is still the subject of intense debate. Here, we provide direct evidence of the role of structural dynamics, with selective atomic motions (buckling of copper-oxygen planes), in the anisotropic electronlattice coupling. The transient structures were determined using time-resolved electron diffraction, following carrier excitation with polarized femtosecond heating pulses, and examined for different dopings and temperatures. The deformation amplitude reaches 0.5 % of the c-axis value of 30 A when the light polarization is in the direction of the copper-oxygen bond, but its decay slows down at 45 degrees. These findings suggest a selective dynamical lattice involvement with the anisotropic electron-phonon coupling being on a time scale (1 to 3.5 ps depending on direction) of the same order of magnitude as that of the spin exchange of electron pairing in the high-temperature superconducting phase.

قيم البحث

اقرأ أيضاً

Explaining the mechanism of superconductivity in the high-$T_c$ cuprates requires an understanding of what causes electrons to form Cooper pairs. Pairing can be mediated by phonons, the screened Coulomb force, spin or charge fluctuations, excitons, o r by a combination of these. An excitonic pairing mechanism has been postulated, but experimental evidence for coupling between conduction electrons and excitons in the cuprates is sporadic. Here we use resonant inelastic x-ray scattering (RIXS) to monitor the temperature dependence of the $underline{d}d$ exciton spectrum of Bi$_2$Sr$_2$CaCu$_2$O$_{8-x}$ (Bi-2212) crystals with different charge carrier concentrations. We observe a significant change of the $underline{d}d$ exciton spectra when the materials pass from the normal state into the superconductor state. From theoretical modeling, we determine the strength of the coupling between the electrons and the excitons. Our observations show that the coupling to excitons can be strong enough to play an important role in stabilizing the superconducting state.
We review the intermediate coupling model for treating electronic correlations in the cuprates. Spectral signatures of the intermediate coupling scenario are identified and used to adduce that the cuprates fall in the intermediate rather than the wea k or the strong coupling limits. A robust, `beyond LDA framework for obtaining wide-ranging properties of the cuprates via a GW-approximation based self-consistent self-energy correction for incorporating correlation effects is delineated. In this way, doping and temperature dependent spectra, from the undoped insulator to the overdoped metal, in the normal as well as the superconducting state, with features of both weak and strong coupling can be modeled in a material-specific manner with very few parameters. Efficacy of the model is shown by considering available spectroscopic data on electron and hole doped cuprates from angle-resolved photoemission (ARPES), scanning tunneling microscopy/spectroscopy (STM/STS), neutron scattering, inelastic light scattering, optical and other experiments. Generalizations to treat systems with multiple correlated bands such as the heavy-fermions, the ruthenates, and the actinides are discussed.
Super-high resolution laser-based angle-resolved photoemission measurements are carried out on LiFeAs superconductor to investigate its electron dynamics. Three energy scales at $sim$20 meV, $sim$34 meV and $sim$55 meV are revealed for the first time in the electron self-energy both in the superconducting state and normal state. The $sim$20 meV and $sim$34 meV scales can be attributed to the coupling of electrons with sharp bosonic modes which are most likely phonons. These observations provide definitive evidence on the existence of mode coupling in iron-based superconductors.
108 - G. Yu , D.-D. Xia , D. Pelc 2017
The nature of the superconducting (SC) precursor in the cuprates has been the subject of intense interest, with profound implications for both the normal and the SC states. Different experimental probes have led to vastly disparate conclusions on the temperature range of superconducting fluctuations. The main challenges have been to separate the SC response from complex normal-state behavior, and to distinguish the underlying behavior of the quintessential CuO$_{2}$ layers from compound-specific properties. Here we reveal remarkably simple and universal behavior of the SC precursor using torque magnetometry, a unique thermodynamic probe with extremely high sensitivity to SC diamagnetism. We comprehensively study four distinct cuprate compounds: single-CuO$_{2}$-layer La$_{2-x}$Sr$_{x}$CuO$_{4}$ (LSCO), Bi$_{2}$(Sr,La)$_{2}$CuO$_{6+delta}$ (Bi2201) and HgBa$_{2}$CuO$_{4+delta}$ (Hg1201), and double-layer Bi$_{2}$Sr$_{2}$Ca$_{0.95}$Y$_{0.05}$CuO$_{8+delta}$ (Bi2212). Our approach, which focuses on the nonlinear diamagnetic response, completely removes normal-state contributions and thus allows us to trace the diamagnetic signal above Tc with great precision. We find that SC diamagnetism vanishes in an unusual, yet surprisingly simple exponential manner, marked by a universal temperature scale that is independent of compound and Tc. We discuss the distinct possibility that this unusual behavior signifies the proliferation of SC clusters as a result of the intrinsic inhomogeneity known to be an inherent property of the cuprates.
The phonon-mediated attractive interaction between carriers leads to the Cooper pair formation in conventional superconductors. Despite decades of research, the glue holding Cooper pairs in high-temperature superconducting cuprates is still controver sial, and the same is true as for the relative involvement of structural and electronic degrees of freedom. Ultrafast electron crystallography (UEC) offers, through observation of spatio-temporally resolved diffraction, the means for determining structural dynamics and the possible role of electron-lattice interaction. A polarized femtosecond (fs) laser pulse excites the charge carriers, which relax through electron-electron and electron-phonon coupling, and the consequential structural distortion is followed diffracting fs electron pulses. In this review, the recent findings obtained on cuprates are summarized. In particular, we discuss the strength and symmetry of the directional electron-phonon coupling in Bi2Sr2CaCu2O8+delta (BSCCO), as well as the c-axis structural instability induced by near-infrared pulses in La2CuO4 (LCO). The theoretical implications of these results are discussed with focus on the possibility of charge stripes being significant in accounting for the polarization anisotropy of BSCCO, and cohesion energy (Madelung) calculations being descriptive of the c-axis instability in LCO.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا