ﻻ يوجد ملخص باللغة العربية
We study the dynamics of the superconducting order parameter in the high-$T_c$ cuprate Bi$_2$Sr$_2$CaCu$_2$O$_{8-delta}$ by employing a novel time-resolved pump-probe Raman experiment. We find two different coupling mechanisms that contribute equally to the pair breaking peak. One coupling sets in very fast at 2ps and relaxes slow, while the other one is delayed and sets in roughly at 5ps and relaxes fast. A model that couples holes through phonons is able to reproduce one part of the condensate dynamics, thus, we argue that hole-spin interactions are of importance as well.
We present a ^{115}In NMR study of the quasi two-dimensional heavy-fermion superconductor CeCoIn_5 believed to host a Fulde-Ferrel-Larkin-Ovchinnkov (FFLO) state. In the vicinity of the upper critical field and with a magnetic field applied parallel
Sr$_2$RuO$_4$ has stood as the leading candidate for a spin-triplet superconductor for 26 years. Recent NMR experiments have cast doubt on this candidacy, however, and it is difficult to find a theory of superconductivity that is consistent with all
The quasi-2D metal Sr$_2$RuO$_4$ is one of the best characterized unconventional superconductors, yet the nature of its superconducting order parameter is still highly debated. This information is crucial to determine the pairing mechanism of Cooper
We report Raman scattering spectra for single crystals of overdoped Tl2Ba2CuO6+d (Tl-2201) at low temperatures. It was observed that the pair-breaking peaks in A1g and B1g spectra radically shift to lower energy with carrier doping. We interpret it a
We report $^{75}$As nuclear quadrupole resonance (NQR) studies on superconducting oxypnictide LaFeAsO$_{0.92}$F$_{0.08}$ ($T_{rm c}$ = 23 K). The temperature dependence of the spin lattice relaxation rate (1/$T_1$) decreases below $T_{rm c}$ without