ترغب بنشر مسار تعليمي؟ اضغط هنا

Black hole spin and radio loudness in a LCDM universe

150   0   0.0 ( 0 )
 نشر من قبل Claudia Lagos
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use a combination of a cosmological N-body simulation of the concordance Lambda cold dark matter (LCDM) paradigm and a semi-analytic model of galaxy formation to investigate the spin development of central supermassive black holes (BHs) and its relation to the BH host galaxy properties. In order to compute BH spins, we use the alpha-model of Shakura & Sunyaev and consider the King et al. warped disc alignment criterion. The orientation of the accretion disc is inferred from the angular momentum of the source of accreted material, which bears a close relationship to the large-scale structure in the simulation. We find that the final BH spin depends almost exclusively on the accretion history and only weakly on the warped disc alignment. The main mechanisms of BH spin-up are found to be gas cooling processes and disc instabilities, a result that is only partially compatible with Monte-Carlo models where the main spin-up mechanisms are major mergers and disc instabilities; the latter results are reproduced when implementing randomly oriented accretion discs in our model. Regarding the BH population, we find that more massive BHs, which are hosted by massive ellipticals, have higher spin values than less-massive BHs, hosted by spiral galaxies. We analyse whether gas accretion rates and BH spins can be used as tracers of the radio loudness of active galactic nuclei (AGN). We find that the current observational indications of an increasing trend of radio-loud AGN fractions with stellar and BH mass can be easily obtained when placing lower limits on the BH spin, with a minimum influence from limits on the accretion rates; a model with random accretion disc orientations is unable to reproduce this trend. (ABRIDGED)



قيم البحث

اقرأ أيضاً

101 - Francesco Shankar 2016
We analyzed a large sample of radio-loud and radio-quiet quasar spectra at redshift 1.0 < z < 1.2 to compare the inferred underlying quasar continuum slopes (after removal of the host galaxy contribution) with accretion disk models. The latter predic t redder (decreasing) alpha_3000 continuum slopes (L_ u~ u^alpha at 3000Ang) with increasing black hole mass, bluer alpha_3000 with increasing luminosity at 3000Ang, and bluer alpha_3000 with increasing spin of the black hole, when all other parameters are held fixed. We find no clear evidence for any of these predictions in the data. In particular we find that: (i) alpha_3000 shows no significant dependence on black hole mass or luminosity. Dedicated Monte Carlo tests suggest that the substantial observational uncertainties in the black hole virial masses can effectively erase any intrinsic dependence of alpha_3000 on black hole mass, in line with some previous studies. (ii) The mean slope alpha_3000 of radio-loud sources, thought to be produced by rapidly spinning black holes, is comparable to, or even redder than, that of radio-quiet quasars. Indeed, although quasars appear to become more radio loud with decreasing luminosity, we still do not detect any significant dependence of alpha_3000 on radio loudness. The predicted mean alpha_3000 slopes tend to be bluer than in the data. Disk models with high inclinations and dust extinction tend to produce redder slopes closer to empirical estimates. Our mean alpha_3000 values are close to the ones independently inferred at z<0.5 suggesting weak evolution with redshift, at least for moderately luminous quasars.
We compare accretion and black hole spin as potential energy sources for outbursts from AGN in brightest cluster galaxies (BCGs). Based on our adopted spin model, we find that the distribution of AGN power estimated from X-ray cavities is consistent with a broad range of both spin parameter and accretion rate. Sufficient quantities of molecular gas are available in most BCGs to power their AGN by accretion alone. However, we find no correlation between AGN power and molecular gas mass over the range of jet power considered here. For a given AGN power, the BCGs gas mass and accretion efficiency, defined as the fraction of the available cold molecular gas that is required to power the AGN, both vary by more than two orders of magnitude. Most of the molecular gas in BCGs is apparently consumed by star formation or is driven out of the nucleus by the AGN before it reaches the nuclear black hole. Bondi accretion from hot atmospheres is generally unable to fuel powerful AGN, unless their black holes are more massive than their bulge luminosities imply. We identify several powerful AGN that reside in relatively gas-poor galaxies, indicating an unusually efficient mode of accretion, or that their AGN are powered by another mechanism. If these systems are powered primarily by black hole spin, rather than by accretion, spin must also be tapped efficiently in some systems, i.e., $P_{rm jet} > dot Mc^2$, or their black hole masses must be substantially larger than the values implied by their bulge luminosities. We constrain the (model dependent) accretion rate at the transition from radiatively inefficient to radiatively efficient accretion flows to be a few percent of the Eddington rate, a value that is consistent with other estimates.
We analyze the causal structure of McVittie spacetime for a classical bouncing cosmological model. In particular, we compute the trapping horizons of the metric and integrate the trajectories of radial null geodesics before, during, and after the bou nce takes place. In the contracting phase up to the occurrence of the bounce, a dynamical black hole is present. When the universe reaches a certain minimum scale, the trapping horizons disappear and the black hole ceases to exist. After the bounce, the central weak singularity becomes naked. In the expanding phase, for large positive values of the cosmic time, the behaviour of null geodesics indicates that the solution contains a black hole. These results suggest that neither a contracting nor an expanding universe can accommodate a black hole at all times.
We investigate primordial black hole formation in the matter-dominated phase of the Universe, where nonspherical effects in gravitational collapse play a crucial role. This is in contrast to the black hole formation in a radiation-dominated era. We a pply the Zeldovich approximation, Thornes hoop conjecture, and Doroshkevichs probability distribution and subsequently derive the production probability $beta_{0}$ of primordial black holes. The numerical result obtained is applicable even if the density fluctuation $sigma$ at horizon entry is of the order of unity. For $sigmall 1$, we find a semi-analytic formula $beta_{0}simeq 0.05556 sigma^{5}$, which is comparable with the Khlopov-Polnarev formula. We find that the production probability in the matter-dominated era is much larger than that in the radiation-dominated era for $sigmalesssim 0.05$, while they are comparable with each other for $sigmagtrsim 0.05$. We also discuss how $sigma$ can be written in terms of primordial curvature perturbations.
In this paper we determined values of a spin of central black holes of the intermediate masses in globular clusters. For determination of value of a spin we used the known relation between the kinetic power of the relativistic jet and observable radi o-luminosity of the region near to a central black hole, and our estimates have based on the known Blandford-Znajek mechanism. The value of a magnetic field strength near the event horizon of a black hole was derived via magnetic coupling mechanism. Accretion rate was derived using Bondi-Hoyle mechanism.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا