ﻻ يوجد ملخص باللغة العربية
We analyze a one-dimensional piecewise continuous discrete model proposed originally in studies on population ecology. The map is composed of a linear part and a power-law decreasing piece, and has three parameters. The system presents both regular and chaotic behavior. We study numerically and, in part, analytically different bifurcation structures. Particularly interesting is the description of the abrupt transition order-to-chaos mediated by an attractor made of an infinite number of limit cycles with only a finite number of different periods. It is shown that the power-law piece in the map is at the origin of this type of bifurcation. The system exhibits interior crises and crisis-induced intermittency.
We use symbolic dynamics to study discrete-time dynamical systems with multiple time delays. We exploit the concept of avoiding sets, which arise from specific non-generating partitions of the phase space and restrict the occurrence of certain symbol
Analytically tractable dynamical systems exhibiting a whole range of normal and anomalous deterministic diffusion are rare. Here we introduce a simple non-chaotic model in terms of an interval exchange transformation suitably lifted onto the whole re
We study the statistics of the amplitude of the synchronization error in chaotic electronic circuits coupled through linear feedback. Depending on the coupling strength, our system exhibits three qualitatively different regimes of synchronization: we
We report the detection of pulsed gamma-ray emission from the Geminga pulsar (PSR J0633+1746) between $15,$GeV and $75,$GeV. This is the first time a middle-aged pulsar has been detected up to these energies. Observations were carried out with the MA
We point out the joint occurrence of Pascal triangle patterns and power-law scaling in the standard logistic map, or more generally, in unimodal maps. It is known that these features are present in its two types of bifurcation cascades: period and ch