ترغب بنشر مسار تعليمي؟ اضغط هنا

Innovative in silico approaches to address avian flu using grid technology

68   0   0.0 ( 0 )
 نشر من قبل Vincent Breton
 تاريخ النشر 2008
  مجال البحث علم الأحياء
والبحث باللغة English
 تأليف V. Vincent Breton




اسأل ChatGPT حول البحث

The recent years have seen the emergence of diseases which have spread very quickly all around the world either through human travels like SARS or animal migration like avian flu. Among the biggest challenges raised by infectious emerging diseases, one is related to the constant mutation of the viruses which turns them into continuously moving targets for drug and vaccine discovery. Another challenge is related to the early detection and surveillance of the diseases as new cases can appear just anywhere due to the globalization of exchanges and the circulation of people and animals around the earth, as recently demonstrated by the avian flu epidemics. For 3 years now, a collaboration of teams in Europe and Asia has been exploring some innovative in silico approaches to better tackle avian flu taking advantage of the very large computing resources available on international grid infrastructures. Grids were used to study the impact of mutations on the effectiveness of existing drugs against H5N1 and to find potentially new leads active on mutated strains. Grids allow also the integration of distributed data in a completely secured way. The paper presents how we are currently exploring how to integrate the existing data sources towards a global surveillance network for molecular epidemiology.

قيم البحث

اقرأ أيضاً

117 - Vasily Ogryzko 2009
I compare two quantum-theoretical approaches to the phenomenon of adaptive mutations, termed here Q-cell and Q-genome. I use fluctuation trapping model as a general framework. I introduce notions of R-error and D-error and argue that the fluctuation trapping model has to employ a correlation between the R- and D- errors. Further, I compare how the two approaches can justify the R-D-error correlation, focusing on the advantages of the Q-cell approach. The positive role of environmentally induced decoherence (EID) on both steps of the adaptation process is emphasized. A starving bacterial cell is proposed to be in an einselected state. The intracellular dynamics in this state has a unitary character and I propose to interpret it as exponential growth in imaginary time, analogously to the commonly considered diffusion interpretation of the Schroedinger equation. Addition of a substrate leads to Wick rotation and a switch from imaginary time reproduction to a real time reproduction regime. Due to the variations at the genomic level (such as base tautomery), the starving cell has to be represented as a superposition of different components, all reproducing in imaginary time. Adidtion of a selective substrate, allowing only one of these components to amplify, will cause Wick rotation and amplification of this component, thus justifying the occurence of the R-D-error correlation. Further ramifications of the proposed ideas for evolutionary theory are discussed.
Generally, genotypes and phenotypes are expected to be spatially congruent, however, in widespread species complexes with few barriers to dispersal, multiple contact zones, and limited reproductive isolation, discordance between phenotypes and phylog eographic groups is more probable. Wagtails (Aves: Motacilla) are a genus of birds with striking plumage pattern variation across Eurasia. Up to 13 subspecies are recognized within a single species, yet previous studies using mitochondrial DNA have supported phylogeographic groups that are inconsistent with subspecies plumage characteristics. In this study, we investigate the link between phenotypes and genotype by comparing populations thought to be at different stages along the speciation continuum. We take a phylogeographic approach by estimating population structure, testing for isolation by distance, conducting demographic modeling, and estimating the first time-calibrated species tree for the genus. Our study provides strong evidence for species-level patterns of differentiation in wagtails, however population-level differentiation is less pronounced. We find evidence that three of four widespread Eurasian species exhibit an east-west divide that contradicts both subspecies taxonomy and phenotypic variation. Both the geographic location of this divide and time estimates from demographic models are overlapping in two sympatric species, indicating that coincident Pleistocene events shaped their histories.
Movement tracks of wild animals frequently fit models of anomalous rather than simple diffusion, mostly reported as ergodic superdiffusive motion combining area-restricted search within a local patch and larger-scale commuting between patches, as hig hlighted by the Levy walk paradigm. Since Levy walks are scale invariant, superdiffusive motion is also expected within patches, yet investigation of such local movements has been precluded by the lack of accurate high-resolution data at this scale. Here, using rich high-resolution movement datasets ($>! 7 times 10^7$ localizations) from 70 individuals and continuous-time random walk modeling, we found subdiffusive behavior and ergodicity breaking in the localized movement of three species of avian predators. Small-scale, within-patch movement was qualitatively different, not inferrable and separated from large-scale inter-patch movement via a clear phase transition. Local search is characterized by long power-law-distributed waiting times with diverging mean, giving rise to ergodicity breaking in the form of considerable variability uniquely observed at this scale. This implies that wild animal movement is scale specific rather than scale free, with no typical waiting time at the local scale. Placing these findings in the context of the static-ambush to mobile-cruise foraging continuum, we verify predictions based on the hunting behavior of the study species and the constraints imposed by their prey.
In here presented in silico study we suggest a way how to implement the evolutionary principles into anti-cancer therapy design. We hypothesize that instead of its ongoing supervised adaptation, the therapy may be constructed as a self-sustaining evo lutionary process in a dynamic fitness landscape established implicitly by evolving cancer cells, microenvironment and the therapy itself. For these purposes, we replace a unified therapy with the `therapy species, which is a population of heterogeneous elementary therapies, and propose a way how to turn the toxicity of the elementary therapy into its fitness in a way conforming to evolutionary causation. As a result, not only the therapies govern the evolution of different cell phenotypes, but the cells resistances govern the evolution of the therapies as well. We illustrate the approach by the minimalistic ad hoc evolutionary model. Its results indicate that the resistant cells could bias the evolution towards more toxic elementary therapies by inhibiting the less toxic ones. As the evolutionary causation of cancer drug resistance has been intensively studied for a few decades, we refer to cancer as a special case to illustrate purely theoretical analysis.
When analysing in vitro data, growth kinetics of influenza strains are often compared by computing their growth rates, which are sometimes used as proxies for fitness. However, analogous to mechanistic epidemic models, the growth rate can be defined as a function of two parameters: the basic reproduction number (the average number of cells each infected cell infects) and the mean generation time (the average length of a replication cycle). Using a mechanistic model, previously published data from experiments in human lung cells, and newly generated data, we compared estimates of all three parameters for six influenza A strains. Using previously published data, we found that the two human-adapted strains (pre-2009 seasonal H1N1, and pandemic H1N1) had a lower basic reproduction number, shorter mean generation time and slower growth rate than the two avian-adapted strains (H5N1 and H7N9). These same differences were then observed in data from new experiments where two strains were engineered to have different internal proteins (pandemic H1N1 and H5N1), but the same surface proteins (PR8), confirming our initial findings and implying that differences between strains were driven by internal genes. Also, the model predicted that the human-adapted strains underwent more replication cycles than the avian-adapted strains by the time of peak viral load, potentially accumulating mutations more quickly. These results suggest that the in vitro reproduction number, generation time and growth rate differ between human-adapted and avian-adapted influenza strains, and thus could be used to assess host adaptation of internal proteins to inform pandemic risk assessment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا