ﻻ يوجد ملخص باللغة العربية
In the small dispersion limit, solutions to the Korteweg-de Vries equation develop an interval of fast oscillations after a certain time. We obtain a universal asymptotic expansion for the Korteweg-de Vries solution near the leading edge of the oscillatory zone up to second order corrections. This expansion involves the Hastings-McLeod solution of the Painleve II equation. We prove our results using the Riemann-Hilbert approach.
We study the small dispersion limit for the Korteweg-de Vries (KdV) equation $u_t+6uu_x+epsilon^{2}u_{xxx}=0$ in a critical scaling regime where $x$ approaches the trailing edge of the region where the KdV solution shows oscillatory behavior. Using t
We provide a general solution for a first order ordinary differential equation with a rational right-hand side, which arises in constructing asymptotics for large time of simultaneous solutions of the Korteweg-de Vries equation and the stationary par
Integrable PDEs on the line can be analyzed by the so-called Inverse Scattering Transform (IST) method. A particularly powerful aspect of the IST is its ability to predict the large $t$ behavior of the solution. Namely, starting with initial data $u(
Considering the Cauchy problem for the Korteweg-de Vries-Burgers equation begin{eqnarray*} u_t+u_{xxx}+epsilon |partial_x|^{2alpha}u+(u^2)_x=0, u(0)=phi, end{eqnarray*} where $0<epsilon,alphaleq 1$ and $u$ is a real-valued function, we show that it
In this paper we consider two numerical scheme based on trapezoidal rule in time for the linearized KdV equation in one space dimension. The goal is to derive some suitable artificial boundary conditions for these two full discretization using Z-tran