ﻻ يوجد ملخص باللغة العربية
Proteins from the kinesin-8 family promote microtubule (MT) depolymerization, a process thought to be important for the control of microtubule length in living cells. In addition to this MT shortening activity, kinesin 8s are motors that show plus-end directed motility on MTs. Here we describe a simple model that incorporates directional motion and destabilization of the MT plus end by kinesin 8. Our model quantitatively reproduces the key features of length-vs-time traces for stabilized MTs in the presence of purified kinesin 8, including length-dependent depolymerization. Comparison of model predictions with experiments suggests that kinesin 8 depolymerizes processively, i.e., one motor can remove multiple tubulin dimers from a stabilized MT. Fluctuations in MT length as a function of time are related to depolymerization processivity. We have also determined the parameter regime in which the rate of MT depolymerization is length dependent: length-dependent depolymerization occurs only when MTs are sufficiently short; this crossover is sensitive to the bulk motor concentration.
Biopolymers serve as one-dimensional tracks on which motor proteins move to perform their biological roles. Motor protein phenomena have inspired theoretical models of one-dimensional transport, crowding, and jamming. Experiments studying the motion
Chromatin loop extrusion is a popular model for the formation of CTCF loops and topological domains. Recent HiC data have revealed a strong bias in favour of a particular arrangement of the CTCF binding motifs that stabilize loops, and extrusion is t
In growing plant cells, parallel ordering of microtubules (MTs) along the inner surface of the cell membrane influences the direction of cell expansion and thereby plant morphology. For correct expansion of organs that primarily grow by elongating, s
Inside cells, various cargos are transported by teams of molecular motors. Intriguingly, the motors involved generally have opposite pulling directions, and the resulting cargo dynamics is a biased stochastic motion. It is an open question how the ce
The bipolar organization of the microtubule-based mitotic spindle is essential for the faithful segregation of chromosomes in cell division. Despite our extensive knowledge of genes and proteins, the physical mechanism of how the ensemble of microtub