ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum transients

41   0   0.0 ( 0 )
 نشر من قبل Adolfo del Campo
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum transients are temporary features of matter waves before they reach a stationary regime. Transients may arise after the preparation of an unstable initial state or due to a sudden interaction or a change in the boundary conditions. Examples are diffraction in time, buildup processes, decay, trapping, forerunners or pulse formation, as well as other phenomena recently discovered, such as the simultaneous arrival of a wave peak at arbitrarily distant observers. The interest on these transients is nowadays enhanced by new technological possibilities to control, manipulate and measure matter waves.

قيم البحث

اقرأ أيضاً

As we begin to reach the limits of classical computing, quantum computing has emerged as a technology that has captured the imagination of the scientific world. While for many years, the ability to execute quantum algorithms was only a theoretical po ssibility, recent advances in hardware mean that quantum computing devices now exist that can carry out quantum computation on a limited scale. Thus it is now a real possibility, and of central importance at this time, to assess the potential impact of quantum computers on real problems of interest. One of the earliest and most compelling applications for quantum computers is Feynmans idea of simulating quantum systems with many degrees of freedom. Such systems are found across chemistry, physics, and materials science. The particular way in which quantum computing extends classical computing means that one cannot expect arbitrary simulations to be sped up by a quantum computer, thus one must carefully identify areas where quantum advantage may be achieved. In this review, we briefly describe central problems in chemistry and materials science, in areas of electronic structure, quantum statistical mechanics, and quantum dynamics, that are of potential interest for solution on a quantum computer. We then take a detailed snapshot of current progress in quantum algorithms for ground-state, dynamics, and thermal state simulation, and analyze their strengths and weaknesses for future developments.
We predict that two electron beams can develop an instability when passing through a slab of left-handed media (LHM). This instability, which is inherent only for LHM, originates from the backward Cherenkov radiation and results in a self-modulation of the beams and radiation of electromagnetic waves. These waves leave the sample via the rear surface of the slab (the beam injection plane) and form two shifted bright circles centered at the beams. A simulated spectrum of radiation has well-separated lines on top of a broad continuous spectrum, which indicates dynamical chaos in the system. The radiation intensity and its spectrum can be controlled either by the beams current or by the distance between the two beams.
We present an approach using quantum walks (QWs) to redistribute ultracold atoms in an optical lattice. Different density profiles of atoms can be obtained by exploiting the controllable properties of QWs, such as the variance and the probability dis tribution in position space using quantum coin parameters and engineered noise. The QW evolves the density profile of atoms in a superposition of position space resulting in a quadratic speedup of the process of quantum phase transition. We also discuss implementation in presently available setups of ultracold atoms in optical lattices.
We introduce a geometric quantification of quantum coherence in single-mode Gaussian states and we investigate the behavior of distance measures as functions of different physical parameters. In the case of squeezed thermal states, we observe that re -quantization yields an effect of noise-enhanced quantum coherence for increasing thermal photon number.
We discuss in detail the implementation of an open-system quantum simulator with Rydberg states of neutral atoms held in an optical lattice. Our scheme allows one to realize both coherent as well as dissipative dynamics of complex spin models involvi ng many-body interactions and constraints. The central building block of the simulation scheme is constituted by a mesoscopic Rydberg gate that permits the entanglement of several atoms in an efficient, robust and quick protocol. In addition, optical pumping on ancillary atoms provides the dissipative ingredient for engineering the coupling between the system and a tailored environment. As an illustration, we discuss how the simulator enables the simulation of coherent evolution of quantum spin models such as the two-dimensional Heisenberg model and Kitaevs toric code, which involves four-body spin interactions. We moreover show that in principle also the simulation of lattice fermions can be achieved. As an example for controlled dissipative dynamics, we discuss ground state cooling of frustration-free spin Hamiltonians.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا