ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonance enhanced turbulent transport

73   0   0.0 ( 0 )
 نشر من قبل Andrew Newton
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effect of oscillatory shear flows on turbulent transport of passive scalar fields is studied by numerical computations based on the results provided by E. Kim [emph{Physics of Plasmas}, {bf 13}, 022308, 2006]. Turbulent diffusion is found to depend crucially on the competition between suppression due to shearing and enhancement due to resonances, depending on the characteristic time and length scales of shear flow and turbulence. Enhancements in transport occur for turbulence with finite memory time either due to Doppler and parametric resonances. Scalings of turbulence amplitude and transport are provided in different parameter spaces. The results suggest that oscillatory shear flows are not only less efficient in regulating turbulence, but also can enhance the value of turbulent diffusion, accelerating turbulent transport.

قيم البحث

اقرأ أيضاً

116 - S. C. Chapman , B. Hnat 2006
Solar wind turbulence is dominated by Alfv{e}nic fluctuations but the power spectral exponents somewhat surprisingly evolve toward the Kolmogorov value of -5/3, that of hydrodynamic turbulence. We show that at 1AU the turbulence decomposes linearly i nto two coexistent components perpendicular and parallel to the local average magnetic field. The first of these is consistent with propagating Alfv{e}n wavepackets and shows the scaling expected of Alfv{e}nic turbulence, namely Irosnikov- Kraichnan. The second shows Kolmogorov scaling which we also find in the number and magnetic energy density, and Poynting flux.
The role of turbulence in current generation and self-excitation of magnetic fields has been studied in the geometry of a mechanically driven, spherical dynamo experiment, using a three dimensional numerical computation. A simple impeller model drive s a flow which can generate a growing magnetic field, depending upon the magnetic Reynolds number, Rm, and the fluid Reynolds number. When the flow is laminar, the dynamo transition is governed by a simple threshold in Rm, above which a growing magnetic eigenmode is observed. The eigenmode is primarily a dipole field tranverse to axis of symmetry of the flow. In saturation the Lorentz force slows the flow such that the magnetic eigenmode becomes marginally stable. For turbulent flow, the dynamo eigenmode is suppressed. The mechanism of suppression is due to a combination of a time varying large-scale field and the presence of fluctuation driven currents which effectively enhance the magnetic diffusivity. For higher Rm a dynamo reappears, however the structure of the magnetic field is often different from the laminar dynamo; it is dominated by a dipolar magnetic field which is aligned with the axis of symmetry of the mean-flow, apparently generated by fluctuation-driven currents. The fluctuation-driven currents have been studied by applying a weak magnetic field to laminar and turbulent flows. The magnetic fields generated by the fluctuations are significant: a dipole moment aligned with the symmetry axis of the mean-flow is generated similar to those observed in the experiment, and both toroidal and poloidal flux expulsion are observed.
A turbulent transport of radiation in the solar convective zone is investigated. The mean-field equation for the irradiation intensity is derived. It is shown that due to the turbulent effects, the effective penetration length of radiation can be inc reased in several times in comparison with the mean penetration length of radiation (defined as an inverse mean absorption coefficient). Using the model of the solar convective zone based on the mixing length theory, where the mean penetration length of radiation is usually much smaller than the turbulent correlation length, it is demonstrated that the ratio of the effective penetration length to the mean penetration length of radiation increases in 2.5 times in the vicinity of the solar surface. The main reason are the compressibility effects that become important in the vicinity of the solar surface where temperature and density fluctuations increase towards the solar surface, enhancing fluctuations of the radiation absorption coefficient and increasing the effective penetration length of radiation.
91 - K. Gustafson 2008
Finite Larmor radius (FLR) effects on non-diffusive transport in a prototypical zonal flow with drift waves are studied in the context of a simplified chaotic transport model. The model consists of a superposition of drift waves of the linearized Has egawa-Mima equation and a zonal shear flow perpendicular to the density gradient. High frequency FLR effects are incorporated by gyroaveraging the ExB velocity. Transport in the direction of the density gradient is negligible and we therefore focus on transport parallel to the zonal flows. A prescribed asymmetry produces strongly asymmetric non- Gaussian PDFs of particle displacements, with Levy flights in one direction but not the other. For zero Larmor radius, a transition is observed in the scaling of the second moment of particle displacements. However, FLR effects seem to eliminate this transition. The PDFs of trapping and flight events show clear evidence of algebraic scaling with decay exponents depending on the value of the Larmor radii. The shape and spatio-temporal self-similar anomalous scaling of the PDFs of particle displacements are reproduced accurately with a neutral, asymmetric effective fractional diffusion model.
287 - J. L. Peterson 2011
The first nonlinear gyrokinetic simulations of electron internal transport barriers (e-ITBs) in the National Spherical Torus Experiment show that reversed magnetic shear can suppress thermal transport by increasing the nonlinear critical gradient for electron-temperature-gradient-driven turbulence to three times its linear critical value. An interesting feature of this turbulence is nonlinearly driven off-midplane radial streamers. This work reinforces the experimental observation that magnetic shear is likely an effective way of triggering and sustaining e-ITBs in magnetic fusion devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا