ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for Redshifted 2.2 MeV Neutron Capture Line From A0535+262 in Outburst

94   0   0.0 ( 0 )
 نشر من قبل Sirin Caliskan
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Be/X-ray binary system A0535+262 underwent a giant outburst in May-June 2005, followed by a dimmer outburst in August-September 2005. This increased intensity provided an opportunity to search for redshifted neutron-capture lines from the surface of the neutron star. If discovered, such lines would constrain the neutron star equation of state, providing the motivation of this search. The spectrometer (SPI) on board the INTEGRAL satellite observed the dimmer outburst and provided the data for this research. We have not detected a line with enough significance, with the width-dependent upper limits on the broadened and redshifted neutron capture line in the range of (2 - 11) x 10^(-4) photons cm^(-2) s^(-1). To our knowledge, these are the strongest upper limits on the redshifted 2.2 MeV emission from an accreting neutron star. Our analysis of the transparency of the neutron star surface for 2.2 MeV photons shows that photons have a small but finite chance of leaving the atmosphere unscattered, which diminishes the possibility of detection.

قيم البحث

اقرأ أيضاً

The Be/X-ray binary 3A 0535+262 has the highest magnetic field determined by cyclotron line studies of all accreting X-ray pulsars, despite an open debate if the fundamental line was rather at ~50 or above 100 keV as observed by different instruments in past outbursts. The source went into quiescence for more than ten years since its last outbursts in 1994. Observing during a `normal outburst August/September 2005 with Integral and RXTE we find a strong cyclotron line feature at ~45 keV and have for the first time since 1975 determined the low energy pulse profile.
Various Li compounds are commonly used at neutron facilities as neutron absorbers. These compounds provide one of the highest ratios of neutron attenuation to $gamma$-ray production. Unfortunately, the usage of these compounds can also give rise to f ast neutron emission with energies up to almost 16 MeV. Historically, some details in this fast neutron production mechanism can be absent from some modeling packages under some optimization scenarios. In this work, we tested Geant4 to assess the performance of this simulation toolkit for the fast neutron generation mechanism. We compare the results of simulations performed with Geant4 to available measurements. The outcome of our study shows that results of the Geant4 simulations are in good agreement with the available measurements for $^6$Li fast neutron production, and suitable for neutron instrument background evaluation at spallation neutron sources.
186 - S. Naik 2007
The transient X-ray binary pulsar A0535+262 was observed with Suzaku on 2005 September 14 when the source was in the declining phase of the August-September minor outburst. The ~103 s X-ray pulse profile was strongly energy dependent, a double peaked profile at soft X-ray energy band (<3 keV) and a single peaked smooth profile at hard X-rays. The width of the primary dip is found to be increasing with energy. The broad-band energy spectrum of the pulsar is well described with a Negative and Positive power-law with EXponential (NPEX) continuum model along with a blackbody component for soft excess. A weak iron K_alpha emission line with an equivalent width ~25 eV was detected in the source spectrum. The blackbody component is found to be pulsating over the pulse phase implying the accretion column and/or the inner edge of the accretion disk may be the possible emission site of the soft excess in A0535+262. The higher value of the column density is believed to be the cause of the secondary dip at the soft X-ray energy band. The iron line equivalent width is found to be constant (within errors) over the pulse phase. However, a sinusoidal type of flux variation of iron emission line, in phase with the hard X-ray flux suggests that the inner accretion disk is the possible emission region of the iron fluorescence line.
We present results obtained from an extensive near-infrared spectroscopic and photometric observations of the Be/X-ray binary A0535+262/HDE 245770 at different phases of its ~111 day orbital period. This observation campaign is a part of the monitori ng programme of selective Be/X-ray binary systems aimed at understanding the X-ray and near-IR properties at different orbital phases, especially during the periastron passage of the neutron star. The near-IR observations were carried out using the 1.2 m telescope at Mt. Abu IR observatory. Though the source was relatively faint for spectroscopic observations with 1.2 m telescope, we monitored the source during the 2011 February--March giant outburst to primarily investigate whether any drastic changes in the near-IR JHK spectra take place at the periastron passage. Changes of such a striking nature were expected to be detectable in our spectra. Photometric observations of the Be star show a gradual and systematic fading in the JHK light curves since the onset of the X-ray outburst that could suggest a mild evacuation/truncation of the circumstellar disc of the Be companion. Near-IR spectroscopy of the object shows that the JHK spectra are dominated by the emission lines of hydrogen Brackett and Paschen series and HeI lines at 1.0830, 1.7002 and 2.0585 micron. The presence of all hydrogen emission lines in the JHK spectra, along with the absence of any significant change in the continuum of the Be companion during X-ray quiescent and X-ray outburst phases suggest that the near-IR line emitting regions of the disc are not significantly affected during the X-ray outburst.
273 - Y. Terada 2006
The binary X-ray pulsar A0535+262 was observed with the Suzaku X-ray observatory, on 2005 September 14 for a net exposure of 22 ksec. The source was in a declining phase of a minor outburst, exhibiting 3--50 keV luminosity of about $3.7 times 10^{35} $ ergs s$^{-1}$ at an assumed distance of 2 kpc. In spite of the very low source intensity (about 30 mCrab at 20 keV), its electron cyclotron resonance was detected clearly with the Suzaku Hard X-ray Detector, in absorption at about 45 keV. The resonance energy is found to be essentially the same as those measured when the source is almost two orders of magnitude more luminous. These results are compared with the luminosity-dependent changes in the cyclotron resonance energy, observed from 4U 0115+63 and X 0331+53.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا