ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Zeno switch for single-photon coherent transport

104   0   0.0 ( 0 )
 نشر من قبل Lan Zhou
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a dynamical quantum Zeno effect, we propose a general approach to control the coupling between a two-level system (TLS) and its surroundings, by modulating the energy level spacing of the TLS with a high frequency signal. We show that the TLS--surroundings interaction can be turned on or off when the ratio between the amplitude and the frequency of the modulating field is adjusted to be a zero of a Bessel function. The quantum Zeno effect of the TLS can also be observed by the vanishing of the photon reflection at these zeros. Based on these results, we propose a quantum switch to control the transport of a single photon in a 1D waveguide. Our analytical results agree well with numerical results using Floquet theory.



قيم البحث

اقرأ أيضاً

90 - Luigi Giannelli , Tom Schmit , 2018
Attenuated laser pulses are often employed in place for single photons in order to test the efficiency of the elements of a quantum network. In this work we analyse theoretically the dynamics of storage of an attenuated light pulse (where the pulse i ntensity is at the single photon level) propagating along a transmission line and impinging on the mirror of a high finesse cavity. Storage is realised by the controlled transfer of the photonic excitations into a metastable state of an atom confined inside the cavity and occurs via a Raman transition with a suitably tailored laser pulse, which drives the atom and minimizes reflection at the cavity mirror. We determine the storage efficiency of the weak coherent pulse which is reached by protocols optimized for single-photon storage. We determine the figures of merit and we identify the conditions on an arbitrary pulse for which the storage dynamics approaches the one of a single photon. Our formalism can be extended to arbitrary types of input pulses and to quantum memories composed by spin ensembles, and serves as a basis for identifying the optimal protocols for storage and readout.
This paper presents a proof-of-principle scheme for the protective measurement of a single photon. In this scheme, the photon is looped arbitrarily many times through an optical stage that implements a weak measurement of a polarization observable fo llowed by a strong measurement protecting the state. The ability of this scheme to realize a large number of such interaction-protection steps means that the uncertainty in the measurement result can be drastically reduced while maintaining a sufficient probability for the photon to survive the measurement.
We experimentally demonstrate, for the first time, noise diagnostics by repeated quantum measurements. Specifically, we establish the ability of a single photon, subjected to random polarisation noise, to diagnose non-Markovian temporal correlations of such a noise process. In the frequency domain, these noise correlations correspond to colored noise spectra, as opposed to the ones related to Markovian, white noise. Both the noise spectrum and its corresponding temporal correlations are diagnosed by probing the photon by means of frequent, (partially-)selective polarisation measurements. Our main result is the experimental demonstration that noise with positive temporal correlations corresponds to our single photon undergoing a dynamical regime enabled by the quantum Zeno effect (QZE), while noise characterized by negative (anti-) correlations corresponds to regimes associated with the anti-Zeno effect (AZE). This demonstration opens the way to a new kind of noise spectroscopy based on QZE and AZE in photon (or other single-particle) state probing.
Strong interactions between single spins and photons are essential for quantum networks and distributed quantum computation. They provide the necessary interface for entanglement distribution, non-destructive quantum measurements, and strong photon-p hoton interactions. Achieving spin-photon interactions in a solid-state device could enable compact chip-integrated quantum circuits operating at gigahertz bandwidths. Many theoretical works have suggested using spins embedded in nanophotonic structures to attain this high-speed interface. These proposals exploit strong light-matter interactions to implement a quantum switch, where the spin flips the state of the photon and a photon flips the spin-state. However, such a switch has not yet been realized using a solid-state spin system. Here, we report an experimental realization of a spin-photon quantum switch using a single solid-state spin embedded in a nanophotonic cavity. We show that the spin-state strongly modulates the cavity reflection coefficient, which conditionally flips the polarization state of a reflected photon on picosecond timescales. We also demonstrate the complementary effect where a single photon reflected from the cavity coherently rotates the spin. These strong spin-photon interactions open up a promising direction for solid-state implementations of high-speed quantum networks and on-chip quantum information processors using nanophotonic devices.
Single-photon switches and transistors generate strong photon-photon interactions that are essential for quantum circuits and networks. However, to deterministically control an optical signal with a single photon requires strong interactions with a q uantum memory, which have been lacking in a solid-state platform. We realize a single-photon switch and transistor enabled by a solid-state quantum memory. Our device consists of a semiconductor spin qubit strongly coupled to a nanophotonic cavity. The spin qubit enables a single gate photon to switch a signal field containing up to an average of 27.7 photons, with a switching time of 63 ps. Our results show that semiconductor nanophotonic devices can produce strong and controlled photon-photon interactions that could enable high-bandwidth photonic quantum information processing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا