ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-3/2 physics of semiconductor hole nanowires: Valence-band mixing and tunable interplay between bulk-material and orbital bound-state spin splittings

100   0   0.0 ( 0 )
 نشر من قبل U. Zuelicke
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. Csontos




اسأل ChatGPT حول البحث

We present a detailed theoretical study of the electronic spectrum and Zeeman splitting in hole quantum wires. The spin-3/2 character of the topmost bulk-valence-band states results in a strong variation of subband-edge g factors between different subbands. We elucidate the interplay between quantum confinement and heavy-hole - light-hole mixing and identify a certain robustness displayed by low-lying hole-wire subband edges with respect to changes in the shape or strength of the wire potential. The ability to address individual subband edges in, e.g., transport or optical experiments enables the study of holes states with nonstandard spin polarization, which do not exist in spin-1/2 systems. Changing the aspect ratio of hole wires with rectangular cross-section turns out to strongly affect the g factor of subband edges, providing an opportunity for versatile in-situ tuning of hole-spin properties with possible application in spintronics. The relative importance of cubic crystal symmetry is discussed, as well as the spin splitting away from zone-center subband edges.



قيم البحث

اقرأ أيضاً

We use an empirical tight-binding approach to calculate electron and hole states in [111]-grown PbSe nanowires. We show that the valley-orbit and spin-orbit splittings are very sensitive to the atomic arrangement within the nanowire elementary cell a nd differ for [111]-nanowires with microscopic $D_{3d}$, $C_{2h}$ and $D_{3}$ symmetries. For the nanowire diameter below 4 nm the valley-orbit splittings become comparable with the confinement energies and the $boldsymbol{k}cdotboldsymbol{p}$ method is inapplicable. Nanowires with the $D_{3}$ point symmetry having no inversion center exhibit giant spin splitting $E = alpha k_z$, linear in one-dimensional wave vector $k_z$, with the constant $alpha$ up to 1 eV$cdot$AA.
89 - X. B. Xiao , F. Li , Y. G. Chen 2012
The local spin polarisation (LSP) of electrons in two typical semiconductor nanowires under the modulation of Rashba spin-orbit interaction (SOI) is investigated theoretically. The influence of both the SOI- and structure-induced bound states on the LSP is taken into account via the spin-resolved lattice Green function method. It is discovered that high spin-density islands with alternative signs of polarisation are formed inside the nanowires due to the interaction between the bound states and the Rashba effective magnetic field. Further study shows that the spin-density islands caused by the structure-induced bound state exhibit a strong robustness against disorder. These findings may provide an efficient way to create local magnetic moments and store information in semiconductors.
We investigate the single and multiple defects embedded in a superconducting host, studying interplay between the proximity induced pairing and interactions. We explore influence of the spin-orbit coupling on energies, polarization and spatial patter ns of the bound (Yu-Shiba-Rusinov) states of magnetic impurities in 2-dimensional square lattice. We also address the peculiar bound states in the proximitized Rashba chain, resembling the Majorana quasiparticles, focusing on their magnetic polarization which has been recently reported by S. Jeon et al., [Science 358, 772 (2017)]. Finally, we study leakage of these polarized Majorana quasiparticles on the side-attached nanoscopic regions and confront them with the subgap Kondo effect near to the singlet-doublet phase transition.
We present a microscopic theory of the magnetic field induced mixing of heavy-hole states +/- 3/2 in GaAs droplet dots grown on (111)A substrates. The proposed theoretical model takes into account the striking dot shape with trigonal symmetry reveale d in atomic force microscopy. Our calculations of the hole states are carried out within the Luttinger Hamiltonian formalism, supplemented with allowance for the triangularity of the confining potential. They are in quantitative agreement with the experimentally observed polarization selection rules, emission line intensities and energy splittings in both longitudinal and transverse magnetic fields for neutral and charged excitons in all measured single dots.
We study an effective one-dimensional quantum model that includes friction and spin-orbit coupling (SOC), and show that the model exhibits spin polarization when both terms are finite. Most important, strong spin polarization can be observed even for moderate SOC, provided that friction is strong. Our findings might help to explain the pronounced effect of chirality on spin distribution and transport in chiral molecules. In particular, our model implies static magnetic properties of a chiral molecule, which lead to Shiba-like states when a molecule is placed on a superconductor, in accordance with recent experimental data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا