ﻻ يوجد ملخص باللغة العربية
We present a detailed theoretical study of the electronic spectrum and Zeeman splitting in hole quantum wires. The spin-3/2 character of the topmost bulk-valence-band states results in a strong variation of subband-edge g factors between different subbands. We elucidate the interplay between quantum confinement and heavy-hole - light-hole mixing and identify a certain robustness displayed by low-lying hole-wire subband edges with respect to changes in the shape or strength of the wire potential. The ability to address individual subband edges in, e.g., transport or optical experiments enables the study of holes states with nonstandard spin polarization, which do not exist in spin-1/2 systems. Changing the aspect ratio of hole wires with rectangular cross-section turns out to strongly affect the g factor of subband edges, providing an opportunity for versatile in-situ tuning of hole-spin properties with possible application in spintronics. The relative importance of cubic crystal symmetry is discussed, as well as the spin splitting away from zone-center subband edges.
We use an empirical tight-binding approach to calculate electron and hole states in [111]-grown PbSe nanowires. We show that the valley-orbit and spin-orbit splittings are very sensitive to the atomic arrangement within the nanowire elementary cell a
The local spin polarisation (LSP) of electrons in two typical semiconductor nanowires under the modulation of Rashba spin-orbit interaction (SOI) is investigated theoretically. The influence of both the SOI- and structure-induced bound states on the
We investigate the single and multiple defects embedded in a superconducting host, studying interplay between the proximity induced pairing and interactions. We explore influence of the spin-orbit coupling on energies, polarization and spatial patter
We present a microscopic theory of the magnetic field induced mixing of heavy-hole states +/- 3/2 in GaAs droplet dots grown on (111)A substrates. The proposed theoretical model takes into account the striking dot shape with trigonal symmetry reveale
We study an effective one-dimensional quantum model that includes friction and spin-orbit coupling (SOC), and show that the model exhibits spin polarization when both terms are finite. Most important, strong spin polarization can be observed even for