ترغب بنشر مسار تعليمي؟ اضغط هنا

In search of progenitors for supernova-less GRBs 060505 and 060614: re-examination of their afterglows

54   0   0.0 ( 0 )
 نشر من قبل Dong Xu
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

GRB060505 and GRB060614 are nearby long-duration gamma-ray bursts (LGRBs) without accompanying supernovae (SNe) down to very strict limits. They thereby challenge the conventional LGRB-SN connection and naturally give rise to the question: are there other peculiar features in their afterglows which would help shed light on their progenitors? To answer this question, we combine new observational data with published data and investigate the multi-band temporal and spectral properties of the two afterglows. We find that both afterglows can be well interpreted within the framework of the jetted standard external shock wave model, and that the afterglow parameters for both bursts fall well within the range observed for other LGRBs. Hence, from the properties of the afterglows there is nothing to suggest that these bursts should have another progenitor than other LGRBs. Recently, Swift-discovered GRB080503 also has the spike + tail structure during its prompt gamma-ray emission seemingly similar to GRB060614. We analyse the prompt emission of this burst and find that this GRB is actually a hard-spike + hard-tail burst with a spectral lag of 0.8$pm$0.4 s during its tail emission. Thus, the properties of the prompt emission of GRB060614 and GRB080503 are clearly different, motivating further thinking of GRB classification. Finally we note that, whereas the progenitor of the two SN-less bursts remains uncertain, the core-collapse origin for the SN-less bursts would be quite certain if a wind-like environment can be observationally established, e.g, from an optical decay faster than the X-ray decay in the afterglows slow cooling phase.

قيم البحث

اقرأ أيضاً

The Bregman divergence (Bregman distance, Bregman measure of distance) is a certain useful substitute for a distance, obtained from a well-chosen function (the Bregman function). Bregman functions and divergences have been extensively investigated du ring the last decades and have found applications in optimization, operations research, information theory, nonlinear analysis, machine learning and more. This paper re-examines various aspects related to the theory of Bregman functions and divergences. In particular, it presents many sufficient conditions which allow the construction of Bregman functions in a general setting and introduces new Bregman functions (such as a negative iterated log entropy). Moreover, it sheds new light on several known Bregman functions such as quadratic entropies, the negative Havrda-Charvat-Tsallis entropy, and the negative Boltzmann-Gibbs-Shannon entropy, and it shows that the negative Burg entropy, which is not a Bregman function according to the classical theory but nevertheless is known to have Bregmanian properties, can, by our re-examination of the theory, be considered as a Bregman function. Our analysis yields several by-products of independent interest such as the introduction of the concept of relative uniform convexity (a certain generalization of uniform convexity), new properties of uniformly and strongly convex functions, and results in Banach space theory.
109 - Y.F. Huang , T. Lu , K.S. Cheng 2004
The overall dynamical evolution and radiation mechanism of $gamma$-ray burst jets are briefly introduced. Various interesting topics concerning beaming in $gamma$-ray bursts are discussed, including jet structures, orphan afterglows and cylindrical j ets. The possible connection between $gamma$-ray bursts and neutron star kicks is also addressed.
60 - Rosalba Perna 2010
While there is mounting evidence that long Gamma-Ray Bursts (GRBs) are associated with the collapse of massive stars, the detailed structure of their pre-supernova stage is still debatable. Particularly uncertain is the degree of mixing among shells of different composition, and hence the role of magnetic torques and convection in transporting angular momentum. Here we show that early-time afterglow observations with the Swift satellite place constraints on the allowed GRB pre-supernova models. In particular, they argue against pre-supernova models in which different elemental shells are unmixed. These types of models would produce energy injections into the GRB engine on timescales between several hundreds of seconds to a few hours. Flaring activity has {em not} been observed in a large fraction of well-monitored long GRBs. Therefore, if the progenitors of long GRBs have common properties, then the lack of flares indicates that the massive stars which produce GRBs are mostly well mixed, as expected in low-metallicity, rapidly rotating massive stars.
118 - C.S. Kochanek 2016
We identify a pre-explosion counterpart to the nearby Type IIP supernova ASASSN-16fq (SN 2016cok) in archival Hubble Space Telescope (HST) data. The source appears to be a blend of several stars that prevents obtaining accurate photometry. However, w ith reasonable assumptions about the stellar temperature and extinction, the progenitor almost certainly had an initial mass M<17Msun, and was most likely in the mass range 8-12Msun. Observations once ASASSN-16fq has faded will have no difficulty accurately determining the properties of the progenitor. In 8 years of Large Binocular Telescope (LBT) data, no significant progenitor variability is detected to RMS limits of roughly 0.03 mag. Of the six nearby SN with constraints on low level variability, SN 1987A, SN 1993J, SN 2008cn, SN 2011dh, SN 2013ej and ASASSN-16fq, only the slowly fading progenitor of SN 2011dh showed clear evidence of variability. Excluding SN 1987A, the 90% confidence limit implied by these sources on the number of outbursts over the last decade before the SN that last longer than 0.1 years (FWHM) and are brighter than M_R<-8 mag is approximately N<3. Our continuing LBT monitoring program will steadily improve constraints on pre-SN progenitor variability at amplitudes far lower than achievable by SN surveys.
We have used two methods to search for surviving companions of Type Ia supernova progenitors in three Balmer-dominated supernova remnants (SNRs) in the Large Magellanic Cloud: 0519-69.0, 0505-67.9 (DEM L71), and 0548-70.4. In the first method, we use the Hubble Space Telescope photometric measurements of stars to construct color-magnitude diagrams (CMDs), and compare positions of stars in the CMDs with those expected from theoretical post-impact evolution of surviving main sequence or helium star companions. No obvious candidates of surviving companion are identified in this photometric search. Future models for surviving red giant companions or with different explosion mechanisms are needed for thorough comparisons with these observations in order to make more definitive conclusions. In the second method, we use Multi-Unit Spectroscopic Explorer (MUSE) observations of 0519-69.0 and DEM L71 to carry out spectroscopic analyses of stars in order to use large peculiar radial velocities as diagnostics of surviving companions. We find a star in 0519-69.0 and a star in DEM L71 moving at radial velocities of 182 $pm$ 0 km s$^{-1}$ and 213 $pm$ 0 km s$^{-1}$, more than 2.5$sigma$ from the mean radial velocity of the underlying stellar population, 264 km s$^{-1}$ and 270 km s$^{-1}$, respectively. These stars need higher-quality spectra to investigate their abundances and rotation velocities to determine whether they are indeed surviving companions of the SN progenitors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا