ترغب بنشر مسار تعليمي؟ اضغط هنا

Coulomb blockade double-dot Aharonov-Bohm interferometer: giant fluctuations

143   0   0.0 ( 0 )
 نشر من قبل Feng Li
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electron transport through two parallel quantum dots is a kind of solid-state realization of double-path interference. We demonstrate that the inter-dot Coulomb correlation and quantum coherence would result in strong current fluctuations with a divergent Fano factor at zero frequency. We also provide physical interpretation for this surprising result, which displays its generic feature and allows us to recover this phenomenon in more complicated systems.



قيم البحث

اقرأ أيضاً

Two distinct types of magnetoresistance oscillations are observed in two electronic Fabry-Perot interferometers of different sizes in the integer quantum Hall regime. Measuring these oscillations as a function of magnetic field and gate voltages, we observe three signatures that distinguish the two types. The oscillations observed in a 2.0 square micron device are understood to arise from the Coulomb blockade mechanism, and those observed in an 18 square micron device from the Aharonov-Bohm mechanism. This work clarifies, provides ways to distinguish, and demonstrates control over, these distinct physical origins of resistance oscillations seen in electronic Fabry-Perot interferometers.
We address the quantum dot phase measurement problem in an open Aharonov-Bohm interferometer, assuming multiple transport channels. In such a case, the quantum dot is characterized by more than one intrinsic phase for the electrons transmission. It i s shown that the phase which would be extracted by the usual experimental method (i.e. by monitoring the shift of the Aharonov-Bohm oscillations, as in Schuster {it et al.}, Nature {bf 385}, 417 (1997)) does not coincide with any of the dot intrinsic phases, but is a combination of them. The formula of the measured phase is given. The particular case of a quantum dot containing a $S=1/2$ spin is discussed and variations of the measured phase with less than $pi$ are found, as a consequence of the multichannel transport.
One of the points at issue with closed-loop-type interferometers is beating in the Aharonov-Bohm (AB) oscillations. Recent observations suggest the possibility that the beating results from the Berry-phase pickup by the conducting electrons in materi als with the strong spin-orbit interaction (SOI). In this study, we also observed beats in the AB oscillations in a gate-defined closed-loop interferometer fabricated on a GaAs/AlGaAs two-dimensional electron-gas heterostructure. Since this heterostructure has very small SOI, the picture of the Berry-phase pickup is ruled out. The observation of beats in this study, with the controllability of forming a single transverse subband mode in both arms of our gate-defined interferometer, also rules out the often-claimed multiple transverse subband effect. It is observed that nodes of the beats with an h/2e period exhibit a parabolic distribution for varying the side gate. These results are shown to be well interpreted, without resorting to the SOI effect, by the existence of two-dimensional multiple longitudinal modes in a single transverse subband. The Fourier spectrum of measured conductance, despite showing multiple h/e peaks with the magnetic-field dependence that are very similar to that from strong-SOI materials, can also be interpreted as the two-dimensional multiple-longitudinal-modes effect.
135 - G. Y. Chen , Y. N. Chen , 2006
We propose a theoretical model to study the single-electron spectra of the concentric quantum double ring fabricated lately by self-assembled technique. Exact diagonalization method is employed to examine the Aharonov-Bohm effect in the concentric do uble ring. It is found the appearance of the AB oscillation in total energy depends on the strength of the screened potential. Variations of the energy spectra with the presence of coulomb impurities located at inner or outer ring are also investigated.
231 - S. Amasha , I. G. Rau , M. Grobis 2010
We report the observation of Coulomb blockade in a quantum dot contacted by two quantum point contacts each with a single fully-transmitting mode, a system previously thought to be well described without invoking Coulomb interactions. At temperatures below 50 mK we observe a periodic oscillation in the conductance of the dot with gate voltage that corresponds to a residual quantization of charge. From the temperature and magnetic field dependence, we infer the oscillations are Mesoscopic Coulomb Blockade, a type of Coulomb blockade caused by electron interference in an otherwise open system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا