ترغب بنشر مسار تعليمي؟ اضغط هنا

Tri-bimaximal lepton mixing from symmetry only

195   0   0.0 ( 0 )
 نشر من قبل Walter Grimus
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We construct a model for tri-bimaximal lepton mixing which employs only family symmetries and their soft breaking; neither vacuum alignment nor supersymmetry, extra dimensions, or non-renormalizable terms are used in our model. It is an extension of the Standard Model making use of the seesaw mechanism with five right-handed neutrino singlets. The scalar sector comprises four Higgs doublets and one complex gauge singlet. The horizontal symmetry of our model is based on the permutation group S_3 of the lepton families together with the three family lepton numbers--united this constitutes a symmetry group Delta(6infty^2). The model makes no predictions for the neutrino masses.

قيم البحث

اقرأ أيضاً

We investigate the theoretical stability of the predictions of tri-bimaximal neutrino mixing with respect to third family wave-function corrections. Such third family wave-function corrections can arise from either the canonical normalisation of the kinetic terms or renormalisation group running effects. At leading order both sorts of corrections can be subsumed into a single universal parameter. For hierarchical neutrinos, this leads to a new testable lepton mixing sum rule s = r cos delta + 2/3 a (where s, r, a describe the deviations of solar, reactor and atmospheric mixing angles from their tri-bimaximal values, and delta is the observable Dirac CP phase) which is stable under all leading order third family wave-function corrections, as well as Cabibbo-like charged lepton mixing effects.
173 - S.F. King 2009
We propose an extension of tri-bimaximal mixing to include a non-zero reactor angle $theta_{13}$ while maintaining the tri-bimaximal predictions for the atmospheric angle $theta_{23}=45^o$ and solar angle $theta_{12}=35^o$. We show how such tri-bimax imal-reactor mixing can arise at leading order from the(type I) see-saw mechanism with partially constrained sequential dominance. Partially constrained sequential dominance can be realized in GUT models with a non-Abelian discrete family symmetry, such as $A_4$, spontaneously broken by flavons with a particular vacuum alignment.
We analyze in detail the predictions of trimaximal neutrino mixing, which is defined by a mixing matrix with identical second column elements. This column is therefore identical to the second column in the case of tri-bimaximal mixing. We also genera lize trimaximal mixing by assuming that the other rows and columns of the mixing matrix individually have the same forms as for tri-bimaximal mixing. The phenomenology of these new mixing scenarios is studied. We emphasize how trimaximal mixings can be distinguished experimentally from broken tri-bimaximal mixing.
99 - Wei Chao , Ya-juan Zheng 2011
Inspired by the recent T2K indication of a relatively large theta_{13}, we provide a systematic study of some general modifications to three mostly discussed neutrino mixing patterns, i.e., tri-bimaximal, bimaximal and democratic mixing matrices. The correlation between theta_{13} and two large mixing angles are provided according to each modifications. The phenomenological predictions of theta_{12} and theta_{23} are also discussed. After the exclusion of several minimal modifications, we still have reasonable predictions of three mixing angles in 3 Sigma level for other scenarios.
We study the CP violation in the deviation from the tri-bimaximal mixing (TBM) of neutrinos. We examine non-trivial relations among the mixing angles and the CP violating Dirac phase in the typical four cases of the deviation from the TBM. The first two cases are derived by the additional rotation of the 2-3 or 1-3 generations of neutrinos in the TBM basis. The other two cases are given by the additional rotation of the 1-3 or 1-2 generations of charged leptons with the TBM neutrinos. These four cases predict different relations among three mixing angles and the CP violating Dirac phase. The rotation of the 2-3 generations of neutrinos in the TBM basis predicts $sin ^2theta _{12}<1/3$, and the CP violating Dirac phase to be $pm (0.09pisim 0.76pi)$ for NH ($pm (0.15pisim 0.73pi) text{for IH}$) depending on $sin ^2theta _{23}$. The rotation of the 1-3 generations of neutrinos in the TBM basis gives $sin ^2theta _{12}>1/3$. The CP violating Dirac phase is not constrained by the input of the present experimental data. For the case of the 1-3 and 1-2 rotations of charged leptons in the TBM basis, the CP violating Dirac phase is predicted in $pm(0.35pisim 0.60pi)$ depending on $sin ^2theta _{12}$ for both NH and IH cases. We also discuss the specific case that $theta_{13}$ is related with the Cabibbo angle $lambda$ such as $sintheta_{13}=lambda/sqrt{2}$, in which the maximal CP violation is preferred. The CP violating Dirac phase can distinguish the lepton flavor mixing patterns at T2K and NO$ u$A experiments in the future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا