ﻻ يوجد ملخص باللغة العربية
In the reaction-diffusion process $A+B to varnothing$ on random scale-free (SF) networks with the degree exponent $gamma$, the particle density decays with time in a power law with an exponent $alpha$ when initial densities of each species are the same. The exponent $alpha$ is $alpha > 1$ for $2 < gamma < 3$ and $alpha=1$ for $gamma ge 3$. Here, we examine the reaction process on fractal SF networks, finding that $alpha < 1$ even for $2 < gamma < 3$. This slowly decaying behavior originates from the segregation effect: Fractal SF networks contain local hubs, which are repulsive to each other. Those hubs attract particles and accelerate the reaction, and then create domains containing the same species of particles. It follows that the reaction takes place at the non-hub boundaries between those domains and thus the particle density decays slowly. Since many real SF networks are fractal, the segregation effect has to be taken into account in the reaction kinetics among heterogeneous particles.
The studies based on $A+A rightarrow emptyset$ and $A+Brightarrow emptyset$ diffusion-annihilation processes have so far been studied on weighted uncorrelated scale-free networks and fractal scale-free networks. In the previous reports, it is widely
A complete understanding of real networks requires us to understand the consequences of the uneven interaction strengths between a systems components. Here we use the minimum spanning tree (MST) to explore the effect of weight assignment and network
We study the decay process for the reaction-diffusion process of three species on the small-world network. The decay process is manipulated from the deterministic rate equation of three species in the reaction-diffusion system. The particle density a
We investigate analytically and numerically the critical line in undirected random Boolean networks with arbitrary degree distributions, including scale-free topology of connections $P(k)sim k^{-gamma}$. We show that in infinite scale-free networks t
Scale-free networks with topology-dependent interactions are studied. It is shown that the universality classes of critical behavior, which conventionally depend only on topology, can also be explored by tuning the interactions. A mapping, $gamma = (