ترغب بنشر مسار تعليمي؟ اضغط هنا

PSR J1753-2240: A mildly recycled pulsar in an eccentric binary system

60   0   0.0 ( 0 )
 نشر من قبل Michael Keith
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of PSR J1753-2240 in the Parkes Multibeam Pulsar Survey database. This 95-ms pulsar is in an eccentric binary system with a 13.6-day orbital period. Period derivative measurements imply a characteristic age in excess of 1 Gyr, suggesting that the pulsar has undergone an episode of accretion-induced spin-up. The eccentricity and spin period are indicative of the companion being a second neutron star, so that the system is similar to that of PSR J1811-1736, although other companion types cannot be ruled out at this time. The companion mass is constrained by geometry to lie above 0.48 solar masses, although long-term timing observations will give additional constraints. If the companion is a white dwarf or main sequence star, optical observations may yield a direct detection of the companion. If the system is indeed one of the few known double neutron star systems, it would lie significantly far from the recently proposed spin-period/eccentricity relationship.

قيم البحث

اقرأ أيضاً

We report on timing observations of the recently discovered binary pulsar PSR J1952+2630 using the Arecibo Observatory. The mildly recycled 20.7-ms pulsar is in a 9.4-hr orbit with a massive, M_WD > 0.93 M_sun, white dwarf (WD) companion. We present, for the first time, a phase-coherent timing solution, with precise spin, astrometric, and Keplerian orbital parameters. This shows that the characteristic age of PSR J1952+2630 is 77 Myr, younger by one order of magnitude than any other recycled pulsar-massive WD system. We derive an upper limit on the true age of the system of 50 Myr. We investigate the formation of PSR J1952+2630 using detailed modelling of the mass-transfer process from a naked helium star on to the neutron star following a common-envelope phase (Case BB Roche-lobe overflow). From our modelling of the progenitor system, we constrain the accretion efficiency of the neutron star, which suggests a value between 100 and 300% of the Eddington accretion limit. We present numerical models of the chemical structure of a possible oxygen-neon-magnesium WD companion. Furthermore, we calculate the past and the future spin evolution of PSR J1952+2630, until the system merges in about 3.4 Gyr due to gravitational wave emission. Although we detect no relativistic effects in our timing analysis we show that several such effects will become measurable with continued observations over the next 10 years; thus PSR J1952+2630 has potential as a testbed for gravitational theories.
We report the discovery and the results of follow-up timing observations of PSR J2045+3633 and PSR J2053+4650, two binary pulsars found in the Northern High Time Resolution Universe pulsar survey being carried out with the Effelsberg radio telescope. Having spin periods of 31.7 ms and 12.6 ms respectively, and both with massive white dwarf companions, $M_{c}, > , 0.8, M_{odot}$, the pulsars can be classified as mildly recycled. PSR J2045+3633 is remarkable due to its orbital period (32.3 days) and eccentricity $e, = , 0.01721244(5)$ which is among the largest ever measured for this class. After almost two years of timing the large eccentricity has allowed the measurement of the rate of advance of periastron at the 5-$sigma$ level, 0.0010(2)$^circ~rm yr^{-1}$. Combining this with a detection of the orthometric amplitude of the Shapiro delay, we obtained the following constraints on the component masses (within general relativity): $M_{p}, = , 1.33^{+0.30}_{-0.28}, M_{odot}$, and $M_{c}, = , 0.94^{+0.14}_{-0.13}, M_{odot}$. PSR J2053+4650 has a 2.45-day circular orbit inclined to the plane of the sky at an angle $i, = , 85.0^{+0.8}_{-0.9},{^circ}$. In this nearly edge-on case the masses can be obtained from the Shapiro delay alone. Our timing observations resulted in a significant detection of this effect giving: $M_{p}, = , 1.40^{+0.21}_{-0.18}, M_{odot}$, and $M_{c}, = , 0.86^{+0.07}_{-0.06}, M_{odot}$.
Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 ms in a highly ecce ntric (e = 0.44) 95-day orbit around a solar mass companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster then ejecting it into the Galactic disk or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74+/-0.04 Msun, an unusually high value.
63 - J. Wang , C.M. Zhang , Y.H. Zhao 2010
We investigate the spin-period evolutions of recycled pulsars in binary accreting systems. Taking both the accretion induced field decay and spin-up into consideration, we calculate their spin-period evolutions influenced by the initial magnetic-fiel d strengths, initial spin-periods and accretion rates, respectively. The results indicate that the minimum spin-period (or maximum spin frequency) of millisecond pulsar (MSP) is independent of the initial conditions and accretion rate when the neutron star (NS) accretes $sim> 0.2ms$. The accretion torque with the fastness parameter and gravitational wave (GW) radiation torque may be responsible for the formation of the minimum spin-period (maximum spin frequency). The fastest spin frequency (716 Hz) of MSP can be inferred to associate with a critical fastness parameter about $omega_{c}=0.55$. Furthermore, the comparisons with the observational data are presented in the field-period ($B-P$) diagram.
We report the discovery of the millisecond pulsar (MSP) PSR J1950+2414 ($P=4.3$ ms) in a binary system with an eccentric ($e=0.08$) 22-day orbit in Pulsar ALFA survey observations with the Arecibo telescope. Its companion star has a median mass of 0. 3 $M_odot$ and is most likely a white dwarf. Fully recycled MSPs like this one are thought to be old neutron stars spun-up by mass transfer from a companion star. This process should circularize the orbit, as is observed for the vast majority of binary MSPs, which predominantly have orbital eccentricities $e < 0.001$. However, four recently discovered binary MSPs have orbits with $0.027 < e < 0.44$; PSR J1950+2414 is the fifth such system to be discovered. The upper limits for its intrinsic spin period derivative and inferred surface magnetic field strength are comparable to those of the general MSP population. The large eccentricities are incompatible with the predictions of the standard recycling scenario: something unusual happened during their evolution. Proposed scenarios are a) initial evolution of the pulsar in a triple system which became dynamically unstable, b) origin in an exchange encounter in an environment with high stellar density, c) rotationally delayed accretion-induced collapse of a super-Chandrasekhar white dwarf, and d) dynamical interaction of the binary with a circumbinary disk. We compare the properties of all five known eccentric MSPs with the predictions of these formation channels. Future measurements of the masses and proper motion might allow us to firmly exclude some of the proposed formation scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا