ﻻ يوجد ملخص باللغة العربية
The gauge polyvalence of a new numerical code is tested, both in harmonic-coordinate simulations (gauge-waves testbed) and in singularity-avoiding coordinates (simple Black-Hole simulations, either with or without shift). The code is built upon an adjusted first-order flux-conservative version of the Z4 formalism and a recently proposed family of robust finite-difference high-resolution algorithms. An outstanding result is the long-term evolution (up to 1000M) of a Black-Hole in normal coordinates (zero shift) without excision.
We present the recent results of a research project aimed at constructing a robust wave extraction technique for numerical relativity. Our procedure makes use of Weyl scalars to achieve wave extraction. It is well known that, with a correct choice of
The numerical evolution of Einsteins field equations in a generic background has the potential to answer a variety of important questions in physics: from applications to the gauge-gravity duality, to modelling black hole production in TeV gravity sc
We discuss a general formalism for numerically evolving initial data in general relativity in which the (complex) Ashtekar connection and the Newman-Penrose scalars are taken as the dynamical variables. In the generic case three gauge constraints and
We produce the first astrophysically-relevant numerical binary black hole gravitational waveform in a higher-curvature theory of gravity beyond general relativity. We simulate a system with parameters consistent with GW150914, the first LIGO detectio
The astrophysics of compact objects, which requires Einsteins theory of general relativity for understanding phenomena such as black holes and neutron stars, is attracting increasing attention. In general relativity, gravity is governed by an extreme