ﻻ يوجد ملخص باللغة العربية
A method for the asteroseismic analysis of beta Cephei stars is presented and applied to the star nu Eridani. The method is based on the analysis of rotational splittings, and their asymmetries using differentially-rotating asteroseismic models. Models with masses around 7.13 M_sun, and ages around 14.9 Myr, were found to fit better 10 of the 14 observed frequencies, which were identified as the fundamental radial mode and the three L=1 triplets g, p, and p. The splittings and aymmetries found for these modes recover those provided in the literature, except for p. For this last mode, all its non-axysimmetric components are predicted by the models. Moreover, opposite signs of the observed and predicted splitting asymmetries are found. If identification is confirmed, this can be a very interesting source of information about the internal rotation profile, in particular in the outer regions of the star. In general, the seismic models which include a description for shellular rotation yield slightly better results as compared with those given by uniformly-rotating models. Furthermore, we show that asymmetries are quite dependent on the overshooting of the convective core, which make the present technique suitable for testing the theories describing the angular momentum redistribution and chemical mixing due to rotationally-induced turbulence.
We report a simultaneous ground and space-based photometric study of the Beta Cephei star Nu Eridani. Half a year of observations have been obtained by four of the five satellites constituting BRITE-Constellation, supplemented with ground-based photo
The excitation of pulsation modes in beta Cephei and Slowly Pulsating B stars is known to be very sensitive to opacity changes in the stellar interior where T~2 10^5 K. In this region differences in opacity up to ~50% can be induced by the choice bet
Star-planet tidal interactions may result in the excitation of inertial waves in the convective region of stars. In low-mass stars, their dissipation plays a prominent role in the long-term orbital evolution of short-period planets. Turbulent convect
We present results of a search for identification of modes responsible for the six most significant frequency peaks detected in the rapidly rotating SPB star $mu$ Eridani. All published and some unpublished photometric data are used in our new analys
This is a progress report of the study of pulsating main-sequence stars in the LMC. Using the OGLE-II photometry supplemented by the MACHO photometry, we find 64 Beta Cephei stars in the LMC. Their periods are generally much longer than observed in s