ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-body forces in Bethe-Salpeter and light-front equations

341   0   0.0 ( 0 )
 نشر من قبل Vladimir Karmanov
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In relativistic frameworks, given by the Bethe-Salpeter and light-front bound state equations, the binding energies of system of three scalar particles interacting by scalar exchange particles are calculated. In contrast to two-body systems, the three-body binding energies obtained in these two approaches differ significantly from each other: the ladder kernel in light-front dynamics underbinds by approximately a factor of two compared to the ladder Bethe-Salpeter equation. By taking into account three-body forces in the light-front approach, generated by two exchange particles in flight, we find that most of this difference disappears; for small exchange masses, the obtained binding energies coincide with each other.



قيم البحث

اقرأ أيضاً

199 - V.A. Karmanov , P. Maris 2008
Bethe-Salpeter and light-front bound state equations for three scalar particles interacting by scalar exchange-bosons are solved in ladder truncation. In contrast to two-body systems, the three-body binding energies obtained in these two approaches d iffer significantly from each other: the ladder kernel in light-front dynamics underbinds by approximately a factor of two compared to the ladder Bethe-Salpeter equation. By taking into account three-body forces in the light-front approach, generated by two exchange-bosons in flight, we find that most of this difference disappears; for small exchange masses, the obtained binding energies coincide with each other.
The off-mass shell scattering amplitude, satisfying the Bethe-Salpeter equation for spinless particles in Minkowski space with the ladder kernel, is computed for the first time.
The off-mass shell scattering amplitude, satisfying the Bethe-Salpeter equation for spinless particles in Minkowski space with the ladder kernel, is computed for the first time.
We review a method to directly solve the Bethe-Salpeter equation in Minkowski space, both for bound and scattering states. It is based on a proper treatment of the many singularities which appear in the kernel and propagators. The off-mass shell scat tering amplitude for spinless particles interacting by a one boson exchange was computed for the first time. Using our Minkowski space solutions for the initial (bound) and final (scattering) states, we calculate elastic and transition (bound to scattering state) electromagnetic form factors. The conservation of the transition electromagnetic current J.q=0, verified numerically, confirms the validity of our solutions.
The scalar three-body Bethe-Salpeter equation, with zero-range interaction, is solved in Minkowski space by direct integration of the four-dimensional integral equation. The singularities appearing in the propagators are treated properly by standard analytical and numerical methods, without relying on any ansatz or assumption. The results for the binding energies and transverse amplitudes are compared with the results computed in Euclidean space. A fair agreement between the calculations is found.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا