ﻻ يوجد ملخص باللغة العربية
In relativistic frameworks, given by the Bethe-Salpeter and light-front bound state equations, the binding energies of system of three scalar particles interacting by scalar exchange particles are calculated. In contrast to two-body systems, the three-body binding energies obtained in these two approaches differ significantly from each other: the ladder kernel in light-front dynamics underbinds by approximately a factor of two compared to the ladder Bethe-Salpeter equation. By taking into account three-body forces in the light-front approach, generated by two exchange particles in flight, we find that most of this difference disappears; for small exchange masses, the obtained binding energies coincide with each other.
Bethe-Salpeter and light-front bound state equations for three scalar particles interacting by scalar exchange-bosons are solved in ladder truncation. In contrast to two-body systems, the three-body binding energies obtained in these two approaches d
The off-mass shell scattering amplitude, satisfying the Bethe-Salpeter equation for spinless particles in Minkowski space with the ladder kernel, is computed for the first time.
The off-mass shell scattering amplitude, satisfying the Bethe-Salpeter equation for spinless particles in Minkowski space with the ladder kernel, is computed for the first time.
We review a method to directly solve the Bethe-Salpeter equation in Minkowski space, both for bound and scattering states. It is based on a proper treatment of the many singularities which appear in the kernel and propagators. The off-mass shell scat
The scalar three-body Bethe-Salpeter equation, with zero-range interaction, is solved in Minkowski space by direct integration of the four-dimensional integral equation. The singularities appearing in the propagators are treated properly by standard