ترغب بنشر مسار تعليمي؟ اضغط هنا

How Polarization and Scattering can reveal Geometries, Dynamics, and Feeding of Active Galactic Nuclei

90   0   0.0 ( 0 )
 نشر من قبل Rene Goosmann
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gaskell et al. (2007) introduced polarization reverberation mapping as a new technique to explore the structure of active galactic nuclei. We present modeling results for the time-dependent polarization signal expected from scattering inside a centrally illuminated spheroid. Such a model setup describes a larger corona surrounding the compact source of an active nucleus. Time-delays between the polarized and the total flux are computed and related to the geometry of the cloud and the viewing angle. When including the in-flow dynamics of the cloud, it is possible to constrain its optical depth and velocity, which enables estimations of the mass inflow rate.



قيم البحث

اقرأ أيضاً

We have used the STOKES radiative transfer code, to model polarization induced by dust scattering in the polar regions of Active Galactic Nuclei (AGN). We discuss the wavelength-dependence of the spectral intensity and polarization over the optical/U V range at different viewing angles for two different types of dust: a Galactic dust model, and a dust model inferred from extinction properties of AGN. The STOKES code and documentation are freely available at http://www.stokes-program.info/.
246 - S. I. Raimundo 2011
The accretion efficiency for individual black holes is very difficult to determine accurately. There are many factors that can influence each step of the calculation, such as the dust and host galaxy contribution to the observed luminosity, the black hole mass and more importantly, the uncertainties on the bolometric luminosity measurement. Ideally, we would measure the AGN emission at every wavelength, remove the host galaxy and dust, reconstruct the AGN spectral energy distribution and integrate to determine the intrinsic emission and the accretion rate. In reality, this is not possible due to observational limitations and our own galaxy line of sight obscuration. We have then to infer the bolometric luminosity from spectral measurements made in discontinuous wavebands and at different epochs. In this paper we tackle this issue by exploring different methods to determine the bolometric luminosity. We first explore the trend of accretion efficiency with black hole mass (efficiency proportional to M^{sim 0.5}) found in recent work by Davis & Laor and discuss why this is most likely an artefact of the parameter space covered by their PG quasar sample. We then target small samples of AGN at different redshifts, luminosities and black hole masses to investigate the possible methods to calculate the accretion efficiency. For these sources we are able to determine the mass accretion rate and, with some assumptions, the accretion efficiency distributions. Even though we select the sources for which we are able to determine the parameters more accurately, there are still factors affecting the measurements that are hard to constrain. We suggest methods to overcome these problems based on contemporaneous multi-wavelength data measurements and specifically targeted observations for AGN in different black hole mass ranges.
The unification scheme of active galactic nuclei (AGNs) invokes an optically thick molecular torus component hiding the broad emission line region. Assuming the presence of a thick neutral component in the molecular torus characterized by a ion{H}{I} column density > $10^{22}{rm cm^{-2}}$, we propose that far UV radiation around Ly$alpha$ can be significantly polarized through Rayleigh scattering. Adopting a Monte Carlo technique we compute polarization of Rayleigh scattered radiation near Ly$alpha$ in a thick neutral region in the shape of a slab and a cylindrical shell. It is found that radiation near Ly$alpha$ Rayleigh reflected from a very thick slab can be significantly polarized in a fairly large range of wavelength $Deltalambdasim 50$ AA exhibiting a flux profile similar to the incident one. Rayleigh transmitted radiation in a slab is characterized by the central dip with a complicated polarization behavior. The optically thick part near Ly$alpha$ center is polarized in the direction perpendicular to the slab normal, which is in contrast to weakly polarized wing parts in the direction parallel to the slab normal. A similar polarization flip phenomenon is also found in the case of a tall cylindrical shell, in which the spatial diffusion along the vertical direction near the inner cylinder wall for core photons leads to a tendency of the electric field aligned to the direction perpendicular to the vertical axis. Observational implications are briefly discussed including spectropolarimetry of the quasar PG~1630+377 by Koratkar et al. in 1990 where Ly$alpha$ is strongly polarized with no other emission lines polarized.
The STOKES Monte Carlo radiative transfer code has been extended to model the velocity dependence of the polarization of emission lines. We use STOKES to present improved modelling of the velocity-dependent polarization of broad emission lines in act ive galactic nuclei. We confirm that off-axis continuum emission can produce observed velocity dependencies of both the degree and position angle of polarization. The characteristic features are a dip in the percentage polarization and an S-shaped swing in the position angle of the polarization across the line profile. Some differences between our STOKES results and previous modelling of polarization due to off-axis emission are noted. In particular we find that the presence of an offset between the maximum in line flux and the dip in the percentage of polarization or the central velocity of the swing in position angle does not necessarily imply that the scattering material is moving radially. Our model is an alternative scenario to the equatorial scattering disk described by Smith et al. (2005). We discuss strategies to discriminate between both interpretations and to constrain their relative contributions to the observed velocity-resolved line and polarization.
135 - S. F. Hoenig 2013
X-ray surveys have revealed a new class of active galactic nuclei (AGN) with a very low observed fraction of scattered soft X-rays, f_scat < 0.5%. Based on X-ray modeling these X-ray new-type, or low observed X-ray scattering (hereafter:low-scatterin g) sources have been interpreted as deeply-buried AGN with a high covering factor of gas. In this paper we address the questions whether the host galaxies of low-scattering AGN may contribute to the observed X-ray properties, and whether we can find any direct evidence for high covering factors from the infrared (IR) emission. We find that X-ray low-scattering AGN are preferentially hosted by highly-inclined galaxies or merger systems as compared to other Seyfert galaxies, increasing the likelihood that the line-of-sight toward the AGN intersects with high columns of host-galactic gas and dust. Moreover, while a detailed analysis of the IR emission of low-scattering AGN ESO 103-G35 remains inconclusive, we do not find any indication of systematically higher dust covering factors in a sample of low-scattering AGN based on their IR emission. For ESO 103-G35, we constrained the temperature, mass and location of the IR emitting dust which is consistent with expectations for the dusty torus. However, a deep silicate absorption feature probably from much cooler dust suggests an additional screen absorber on larger scales within the host galaxy. Taking these findings together, we propose that the low f_scat observed in low-scattering AGN is not necessarily the result of circumnuclear dust but could originate from interference of host-galactic gas with a column density of the order of 10^22 cm^-2 with the line-of-sight. We discuss implications of this hypothesis for X-ray models, high-ionization emission lines, and observed star-formation activity in these objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا