We formulate and prove the analogue of Mosers stability theorem for locally conformally symplectic structures. As special cases we recover some results previously proved by Banyaga.
We discuss a correspondence between certain contact pairs on the one hand, and certain locally conformally symplectic forms on the other. In particular, we characterize these structures through suspensions of contactomorphisms. If the contact pair is
endowed with a normal metric, then the corresponding lcs form is locally conformally Kaehler, and, in fact, Vaisman. This leads to classification results for normal metric contact pairs. In complex dimension two we obtain a new proof of Belguns classification of Vaisman manifolds under the additional assumption that the Kodaira dimension is non-negative. We also produce many examples of manifolds admitting locally conformally symplectic structures but no locally conformally Kaehler ones.
A C-symplectic structure is a complex-valued 2-form which is holomorphically symplectic for an appropriate complex structure. We prove an analogue of Mosers isotopy theorem for families of C-symplectic structures and list several applications of this
result. We prove that the degenerate twistorial deformation associated to a holomorphic Lagrangian fibration is locally trivial over the base of this fibration. This is used to extend several theorems about Lagrangian fibrations, known for projective hyperkahler manifolds, to the non-projective case. We also exhibit new examples of non-compact complex manifolds with infinitely many pairwise non-birational algebraic compactifications.
We study the condition in which G2-structures are introduced by a non closed four-form, although they are satisfying locally conformal conditions.All solutions are found in the case when the Lee form of G2-structures is non-zero and gintroduces seven
-dimensional Lie algebras, The main results are given in preposition1 and theorem1.
We prove Gray--Moser stability theorems for complementary pairs of forms of constant class defining symplectic pairs, contact-symplectic pairs and contact pairs. We also consider the case of contact-symplectic and contact-contact structures, in which
the constant class condition on a one-form is replaced by the condition that its kernel hyperplane distribution have constant class in the sense of E. Cartan.
This paper presents two existence h-principles, the first for conformal symplectic structures on closed manifolds, and the second for leafwise conformal symplectic structures on foliated manifolds with non empty boundary. The latter h-principle allow
s to linearly deform certain codimension-$1$ foliations to contact structures. These results are essentially applications of the Borman-Eliashberg-Murphy h-principle for overtwisted contact structures and of the Eliashberg-Murphy symplectization of cobordisms, together with tools pertaining to foliated Morse theory, which are elaborated here.