ترغب بنشر مسار تعليمي؟ اضغط هنا

The Full Spectrum Galactic Terrarium: MHz to TeV Observations of Various Critters

131   0   0.0 ( 0 )
 نشر من قبل Mallory S. E. Roberts
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Multi-wavelength studies at radio, infrared, optical, X-ray, and TeV wavelengths have discovered probable counterparts to many Galactic sources of GeV emission detected by EGRET. These include pulsar wind nebulae, high mass X-ray binaries, and mixed morphology supernova remnants. Here we provide an overview of the observational properties of Galactic sources which emit across 19 orders of magnitude in energy. We also present new observations of several sources.

قيم البحث

اقرأ أيضاً

Markarian 421 was the first extragalactic source to be detected with high statistical certainty at TeV energies. The Whipple Observatory gamma-ray telescope has been used to observe the Active Galactic Nucleus, Markarian 421 in 1996 and 1997. The rap id variability observed in TeV gamma rays in previous years is confirmed. Doubling times as short as 15 minutes are reported with flux levels reaching 15 photons per minute. The TeV energy spectrum is derived using two independent methods. The implications for the intergalactic infra-red medium of an observed unbroken power law spectrum up to energies of 5 TeV is discussed.
68 - J. Quinn , I.H. Bond , P.J. Boyle 1997
Markarian 501 is only the second extragalactic source to be detected with high statistical certainty at TeV energies; it is similar in many ways to Markarian 421. The Whipple Observatory gamma-ray telescope has been used to observe the AGN Markarian 501 in 1996 and 1997, the years subsequent to its initial detection. The apparent variability on the one-day time-scale observed in TeV gamma rays in 1995 is confirmed and compared with the variability in Markarian 421. Observations at X-ray and optical wavelengths from 1997 are also presented.
166 - A. Archer , W. Benbow , R. Bird 2016
The Galactic Center Ridge has been observed extensively in the past by both GeV and TeV gamma-ray instruments revealing a wealth of structure, including a diffuse component as well as the point sources G0.9+0.1 (a composite supernova remnant) and Sgr A* (believed to be associated with the supermassive black hole located at the center of our Galaxy). Previous very high energy (VHE) gamma-ray observations with the H.E.S.S. experiment have also detected an extended TeV gamma-ray component along the Galactic plane in the >300 GeV gamma-ray regime. Here we report on observations of the Galactic Center Ridge from 2010-2014 by the VERITAS telescope array in the >2 TeV energy range. From these observations we 1.) provide improved measurements of the differential energy spectrum for Sgr A* in the >2 TeV gamma-ray regime, 2.) provide a detection in the >2 TeV gamma-ray emission from the composite SNR G0.9+0.1 and an improved determination of its multi-TeV gamma-ray energy spectrum, 3.) report on the detection of VER J1746-289, a localized enhancement of >2 TeV gamma-ray emission along the Galactic plane.
Optical constants characterize the interaction of materials with light and are important properties in material design. Here we present a Python-based Corvus workflow for simulations of full spectrum optical constants from the UV-VIS to hard x-ray wa velengths based on the real-space Greens function code FEFF10 and structural data from the Materials Project (MP). The Corvus workflow manager and its associated tools provide an interface to FEFF10 and the MP database. The workflow parallelizes the FEFF computations of optical constants over all absorption edges for each material in the MP database specified by a unique MP-ID. The workflow tools determine the distribution of computational resources needed for that case. Similarly, the optical constants for selected sets of materials can be computed in a single-shot. To illustrate the approach, we present results for nearly all elemental solids in the periodic table, as well as a sample compound, and compared with experimental results. As in x-ray absorption spectra, these results are interpreted in terms of an atomic-like background and fine-structure contributions.
The BL Lac object H1426+428 was recently detected as a high energy gamma-ray source by the VERITAS collaboration (Horan et al. 2002). We have reanalyzed the 2001 portion of the data used in the detection in order to examine the spectrum of H1426+428 above 250 GeV. We find that the time-averaged spectrum agrees with a power law of the shape dF/dE = 10^(-7.31 +- 0.15(stat) +- 0.16(syst)) x E^(-3.50 +- 0.35(stat) +- 0.05(syst)) m^(-2)s^(-1)TeV^(-1) The statistical evidence from our data for emission above 2.5 TeV is 2.6 sigma. With 95% c.l., the integral flux of H1426+428 above 2.5 TeV is larger than 3% of the corresponding flux from the Crab Nebula. The spectrum is consistent with the (non-contemporaneous) measurement by Aharonian et al. (2002) both in shape and in normalization. Below 800 GeV, the data clearly favours a spectrum steeper than that of any other TeV Blazar observed so far indicating a difference in the processes involved either at the source or in the intervening space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا