ترغب بنشر مسار تعليمي؟ اضغط هنا

Parameter Estimation from an Optimal Projection in a Local Environment

42   0   0.0 ( 0 )
 نشر من قبل Alejandra Recio-Blanco
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The parameter fit from a model grid is limited by our capability to reduce the number of models, taking into account the number of parameters and the non linear variation of the models with the parameters. The Local MultiLinear Regression (LMLR) algorithms allow one to fit linearly the data in a local environment. The MATISSE algorithm, developed in the context of the estimation of stellar parameters from the Gaia RVS spectra, is connected to this class of estimators. A two-steps procedure was introduced. A raw parameter estimation is first done in order to localize the parameter environment. The parameters are then estimated by projection on specific vectors computed for an optimal estimation. The MATISSE method is compared to the estimation using the objective analysis. In this framework, the kernel choice plays an important role. The environment needed for the parameter estimation can result from it. The determination of a first parameter set can be also avoided for this analysis. These procedures based on a local projection can be fruitfully applied to non linear parameter estimation if the number of data sets to be fitted is greater than the number of models.

قيم البحث

اقرأ أيضاً

This work contributes to the limited literature on estimating the diffusivity or drift coefficient of nonlinear SPDEs driven by additive noise. Assuming that the solution is measured locally in space and over a finite time interval, we show that the augmented maximum likelihood estimator introduced in Altmeyer, Reiss (2020) retains its asymptotic properties when used for semilinear SPDEs that satisfy some abstract, and verifiable, conditions. The proofs of asymptotic results are based on splitting the solution in linear and nonlinear parts and fine regularity properties in $L^p$-spaces. The obtained general results are applied to particular classes of equations, including stochastic reaction-diffusion equations. The stochastic Burgers equation, as an example with first order nonlinearity, is an interesting borderline case of the general results, and is treated by a Wiener chaos expansion. We conclude with numerical examples that validate the theoretical results.
57 - Masahide Sasaki 2002
We investigate strategies for estimating a depolarizing channel for a finite dimensional system. Our analysis addresses the double optimization problem of selecting the best input probe state and the measurement strategy that minimizes the Bayes cost of a quadratic function. In the qubit case, we derive the Bayes optimal strategy for any finite number of input probe particles when bipartite entanglement can be formed in the probe particles.
Many organisms, from flies to humans, use visual signals to estimate their motion through the world. To explore the motion estimation problem, we have constructed a camera/gyroscope system that allows us to sample, at high temporal resolution, the jo int distribution of input images and rotational motions during a long walk in the woods. From these data we construct the optimal estimator of velocity based on spatial and temporal derivatives of image intensity in small patches of the visual world. Over the bulk of the naturally occurring dynamic range, the optimal estimator exhibits the same systematic errors seen in neural and behavioral responses, including the confounding of velocity and contrast. These results suggest that apparent errors of sensory processing may reflect an optimal response to the physical signals in the environment.
The integration of renewables into electrical grids calls for optimization-based control schemes requiring reliable grid models. Classically, parameter estimation and optimization-based control is often decoupled, which leads to high system operation cost in the estimation procedure. The present work proposes a method for simultaneously minimizing grid operation cost and optimally estimating line parameters based on methods for the optimal design of experiments. This method leads to a substantial reduction in cost for optimal estimation and in higher accuracy in the parameters compared with standard Optimal Power Flow and maximum-likelihood estimation. We illustrate the performance of the proposed method on a benchmark system.
49 - Dong Xie , Chunling Xu 2019
We investigate the frequency estimation of an optical field suffering from an unavoidable dissipative environment. Generally, dissipative noises greatly reduce the precision. Here, we find that two-photon driving can improve the measurement precision by resisting the noises. Moreover, in long time, the uncertainty of frequency can be close to 0 with a proper magnitude of the parametric two-photon drive, which is in sharp contrast to the uncertainty going to infinity without the two-photon driving. Our results show that two-photon driving can realize the ultrasensitive measurement in dissipative environment under the long-encoding-time condition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا