ترغب بنشر مسار تعليمي؟ اضغط هنا

Can Dark Matter Decay in Dark Energy?

53   0   0.0 ( 0 )
 نشر من قبل Jos\\'e Fernando de Jesus
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the interaction between Dark Energy and Dark Matter from a thermodynamical perspective. By assuming they have different temperatures, we study the possibility of occurring a decay from Dark Matter into Dark Energy, characterized by a negative parameter $Q$. We find that, if at least one of the fluids has non vanishing chemical potential, for instance $mu_x<0$ and $mu_{dm}=0$ or $mu_x=0$ and $mu_{dm}>0$, the decay is possible, where $mu_x$ and $mu_{dm}$ are the chemical potentials of Dark Energy and Dark Matter, respectively. Using recent cosmological data, we find that, for a fairly simple interaction, the Dark Matter decay is favored with a probability of $sim 93%$ over the Dark Energy decay. This result comes from a likelihood analysis where only background evolution has been considered.

قيم البحث

اقرأ أيضاً

In this paper we study a model of interacting dark energy - dark matter where the ratio between these components is not constant, changing from early to late times in such a way that the model can solve or alleviate the cosmic coincidence problem (CP ). The interaction arises from an assumed relation of the form $rho_xproptorho_d^alpha$, where $rho_x$ and $rho_d$ are the energy densities of dark energy and dark matter components, respectively, and $alpha$ is a free parameter. For a dark energy equation of state parameter $w=-1$ we found that, if $alpha=0$, the standard $Lambda$CDM model is recovered, where the coincidence problem is unsolved. For $0<alpha<1$, the CP would be alleviated and for $alphasim 1$, the CP would be solved. The dark energy component is analyzed with both $w=-1$ and $w eq -1$. Using Supernovae type Ia and Hubble parameter data constraints, in the case $w=-1$ we find $alpha=0.109^{+0.062}_{-0.072}$ at 68% C.L., and the CP is alleviated. This model is also slightly favoured against nonflat $Lambda$CDM model by using a Bayesian Information Criterion (BIC) analysis. For $w eq-1$, a degeneracy arises on the $w$ - $alpha$ plane. In order to break such degeneracy we add cosmic microwave background distance priors and baryonic acoustic oscillations data to the constraints, yielding $alpha=-0.075pm 0.046$ at 68% C.L.. In this case we find that the CP is not alleviated even for 2$sigma$ interval for $alpha$. Furthermore, this last model is discarded against nonflat $Lambda$CDM according to BIC analysis.
We investigate the effect of dark energy on the density profiles of dark matter haloes with a suite of cosmological N-body simulations and use our results to test analytic models. We consider constant equation of state models, and allow both w>-1 and w<-1. Using five simulations with w ranging from -1.5 to -0.5, and with more than ~1600 well-resolved haloes each, we show that the halo concentration model of Bullock et al. (2001) accurately predicts the median concentrations of haloes over the range of w, halo masses, and redshifts that we are capable of probing. We find that the Bullock et al. (2001) model works best when halo masses and concentrations are defined relative to an outer radius set by a cosmology-dependent virial overdensity. For a fixed power spectrum normalization and fixed-mass haloes, larger values of w lead to higher concentrations and higher halo central densities, both because collapse occurs earlier and because haloes have higher virial densities. While precise predictions of halo densities are quite sensitive to various uncertainties, we make broad comparisons to galaxy rotation curve data. At fixed power spectrum normalization (fixed sigma_8), w>-1 quintessence models seem to exacerbate the central density problem relative to the standard w=-1 model. Meanwhile w<-1 models help to reduce the apparent discrepancy. We confirm that the Jenkins et al. (2001) halo mass function provides an excellent approximation to the abundance of haloes in our simulations and extend its region of validity to include models with w<-1.
Dark energy/matter unification is first demonstrated within the framework of a simplified model. Geodetic evolution of a cosmological constant dominated bubble Universe, free of genuine matter, is translated into a specific FRW cosmology whose effe ctively induced dark component highly resembles the cold dark matter ansatz. The realistic extension constitutes a dark soliton which bridges past (radiation and/or matter dominated) and future (cosmological constant dominated) Einstein regimes; its experimental signature is a moderate redshift dependent cold dark matter deficiency function.
We argue that observations of old neutron stars can impose constraints on dark matter candidates even with very small elastic or inelastic cross section, and self-annihilation cross section. We find that old neutron stars close to the galactic center or in globular clusters can maintain a surface temperature that could in principle be detected. Due to their compactness, neutron stars can acrete WIMPs efficiently even if the WIMP-to-nucleon cross section obeys the current limits from direct dark matter searches, and therefore they could constrain a wide range of dark matter candidates.
We discuss the existence of an acceleration scale in galaxies and galaxy clusters. The presence of the same acceleration scale found at very different scales and in very different astrophysical objects strongly supports the existence of a fundamental acceleration scale governing the observed gravitational physics. We also comment on the implication of such a fundamental acceleration scale on the problem of dark matter. We discuss the relevance of the fundamental acceleration for the nature of dark matter as well as for structure formation to be explored in future numerical simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا