ﻻ يوجد ملخص باللغة العربية
We study traveling waves for reaction diffusion equations on the spatially discrete domain $Z^2$. The phenomenon of crystallographic pinning occurs when traveling waves become pinned in certain directions despite moving with non-zero wave speed in nearby directions. Mallet-Paret has shown that crystallographic pinning occurs for all rational directions, so long as the nonlinearity is close to the sawtooth. In this paper we show that crystallographic pinning holds in the horizontal and vertical directions for bistable nonlinearities which satisfy a specific computable generic condition. The proof is based on dynamical systems. In particular, it relies on an examination of the heteroclinic chains which occur as singular limits of wave profiles on the boundary of the pinning region.
In this paper, without assuming symmetry, irreducibility, or linearity of the couplings, we prove that a single controller can pin a coupled complex network to a homogenous solution. Sufficient conditions are presented to guarantee the convergence of
The dynamics of an inviscid and incompressible fluid flow on a Riemannian manifold is governed by the Euler equations. Recently, Tao [35,36] launched a programme to address the global existence problem for the Euler and Navier Stokes equations based
The architecture of infinite structures with non-crystallographic symmetries can be modeled via aperiodic tilings, but a systematic construction method for finite structures with non-crystallographic symmetry at different radial levels is still lacki
It was recently shown by Gaidashev and Yampolsky that appropriately defined renormalizations of a sufficiently dissipative golden-mean semi-Siegel Henon map converge super-exponentially fast to a one-dimensional renormalization fixed point. In this p
Standard X-ray crystallography methods use free-atom models to calculate mean unit cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density