ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical pulse propagation with minimal approximations

108   0   0.0 ( 0 )
 نشر من قبل Paul Kinsler
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Paul Kinsler




اسأل ChatGPT حول البحث

Propagation equations for optical pulses are needed to assist in describing applications in ever more extreme situations -- including those in metamaterials with linear and nonlinear magnetic responses. Here I show how to derive a single first order propagation equation using a minimum of approximations and a straightforward factorization mathematical scheme. The approach generates exact coupled bi-directional equations, after which it is clear that the description can be reduced to a single uni-directional first order wave equation by means of a simple slow evolution approximation, where the optical pulse changes little over the distance of one wavelength. It also also allows a direct term-to-term comparison of an exact bi-directional theory with the approximate uni-directional theory.



قيم البحث

اقرأ أيضاً

287 - P. Kinsler 2010
I present an overview of pulse propagation methods used in nonlinear optics, covering both full-field and envelope-and-carrier methods. Both wideband and narrowband cases are discussed. Three basic forms are considered -- those based on (a) Maxwells equations, (b) directional fields, and (c) the second order wave equation. While Maxwells equations simulators are the most general, directional field methods can give significant computational and conceptual advantages. Factorizations of the second order wave equation complete the set by being the simplest to understand. One important conclusion is that that envelope methods based on forward-only directional field propagation has made the traditional envelope methods (such as the SVEA, and extensions) based on the second order wave equation utterly redundant.
262 - P. Kinsler 2007
I apply the method of characteristics to both bi-directional and uni-directional pulse propagation in dispersionless media containing nonlinearity of arbitrary order. The differing analytic predictions for the shocking distance quantify the effects o f the uni-directional approximation used in many pulse propagation models. Results from numerical simulations support the theoretical predictions, and reveal the nature of the coupling between forward and backward waves.
Generating intense ultrashort pulses with high-quality spatial modes is crucial for ultrafast and strong-field science. This can be accomplished by controlling propagation of femtosecond pulses under the influence of Kerr nonlinearity and achieving s table propagation with high intensity. In this work, we propose that the generation of spatial solitons in periodic layered Kerr media can provide an optimum condition for supercontinuum generation and pulse compression using multiple thin plates. With both the experimental and theoretical investigations, we successfully identify these solitary modes and reveal a universal relationship between the beam size and the critical nonlinear phase. Space-time coupling is shown to strongly influence the spectral, spatial and temporal profiles of femtosecond pulses. Taking advantage of the unique characters of these solitary modes, we demonstrate single-stage supercontinuum generation and compression of femtosecond pulses from initially 170 fs down to 22 fs with an efficiency ~90%. We also provide evidence of efficient mode self-cleaning which suggests rich spatial-temporal self-organization processes of laser beams in a nonlinear resonator.
135 - P. Kinsler 2012
I calculate the limitations on the widely-used forward-only (uni-directional) propagation assumption by considering the effects of transverse effects (e.g. diffraction). The starting point is the scalar second order wave equation, and simple predicti ons are made which aim to clarify the forward-backward coupling limits on diffraction strength. The result is unsurprising, being based on the ratio of transverse and total wave vectors, but the intent is to present a derivation directly comparable to a recently published emph{nonlinearity} constrained limits on the uni-directional approximation [Kinsler, J. Opt. Soc. Am. B (2007)].
We demonstrate a new design principle for unidirectionally invisible non-Hermitian structures that are not only invisible for one specific wavelength but rather for a broad frequency range. Our idea is based on the concept of constant-intensity waves , which can propagate even through highly disordered media without back-scattering or intensity variations. Contrary to already existing invisibility studies, our new design principle requires neither a specific symmetry (like $mathcal{PT}$-symmetry) nor periodicity, and can thus be applied in a much wider context. This generality combined with broadband frequency stability allows a pulse to propagate through a disordered medium as if the medium was entirely uniform.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا