ترغب بنشر مسار تعليمي؟ اضغط هنا

Possible superconducting symmetry on doped J1-J2 model

150   0   0.0 ( 0 )
 نشر من قبل HuaiXiang Huang
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By making use of renormalized mean-field theory, we investigate possible superconducting symmetries in the ground states of t1-t2-J1-J2 model on square lattice. The superconducting symmetries of the ground states are determined by the frustration amplitude t2/t1 and doping concentration. The phase diagram of this system in frustration-doping plane is given. The order of the phase transitions among these different superconducting symmetry states of the system is discussed.



قيم البحث

اقرأ أيضاً

Magnetization M(T,H) measurements performed on thoroughly characterized commercial amorphous carbon powder doped with sulfur (AC-S), revealed the occurrence of an inhomogeneous superconductivity (SC) below T_c = 38 K. The constructed magnetic field-t emperature (H-T) phase diagram resembles that of type-II superconductors. However, AC-S demonstrates a number of anomalies. In particular, we observed (1) a non-monotonic behavior of the lower critical field H_c1(T); (2) a pronounced positive curvature of the upper critical field boundary that we associated with the flux lattice melting line Hm(T); (3) a spontaneous ferromagnetic-like magnetization M0 coexisting with SC. Based on the analysis of experimental results we propose a nonstandard SC state in AC-S.
We perform an extensive density matrix renormalization group (DMRG) study of the ground-state phase diagram of the spin-1/2 J_1-J_2 Heisenberg model on the kagome lattice. We focus on the region of the phase diagram around the kagome Heisenberg antif erromagnet, i.e., at J_2=0. We investigate the static spin structure factor, the magnetic correlation lengths, and the spin gaps. Our results are consistent with the absence of magnetic order in a narrow region around J_2approx 0, although strong finite-size effects do not allow us to accurately determine the phase boundaries. This result is in agreement with the presence of an extended spin-liquid region, as it has been proposed recently. Outside the disordered region, we find that for ferromagnetic and antiferromagnetic J_2 the ground state displays signatures of the magnetic order of the sqrt{3}timessqrt{3} and the q=0 type, respectively. Finally, we focus on the structure of the entanglement spectrum (ES) in the q=0 ordered phase. We discuss the importance of the choice of the bipartition on the finite-size structure of the ES.
We constructed an effective tight-binding model with five Cr $3d$ orbitals for LaOCrAs according to first-principles calculations. Basing on this model, we investigated possible superconductivity induced by correlations in doped LaOCrAs using the fun ctional renormalization group (FRG). We find that there are two domes of superconductivity in electron-doped LaOCrAs. With increasing electron doping, the ground state of the system evolves from G-type antiferromagnetism in the parent compound to an incipient $s_pm$-wave superconducting phase dominated by electron bands derived from the $d_{3z^2-r^2}$ orbital as the filling is above $4.2$ electrons per site on the $d$-orbitals of Cr. The gap function has strong octet anisotropy on the Fermi pocket around the zone center and diminishes on the other pockets. In electron over-doped LaOCrAs, the system develops $d_{x^2-y^2}$-wave superconducting phase and the active band derives from the $d_{xy}$ orbital. Inbetween the two superconducting domes, a time-reversal symmetry breaking $s+id$ SC phase is likely to occur. We also find $s_pm$-wave superconducting phase in the hole-doped case.
61 - V. Lante , A. Parola 2006
The two dimensional Heisenberg antiferromagnet on the square lattice with nearest (J1) and next-nearest (J2) neighbor couplings is investigated in the strong frustration regime (J2/J1>1/2). A new effective field theory describing the long wavelength physics of the model is derived from the quantum hamiltonian. The structure of the resulting non linear sigma model allows to recover the known spin wave results in the collinear regime, supports the presence of an Ising phase transition at finite temperature and suggests the possible occurrence of a non-magnetic ground state breaking rotational symmetry. By means of Lanczos diagonalizations we investigate the spin system at T=0, focusing our attention on the region where the collinear order parameter is strongly suppressed by quantum fluctuations and a transition to a non-magnetic state occurs. Correlation functions display a remarkable size independence and allow to identify the transition between the magnetic and non-magnetic region of the phase diagram. The numerical results support the presence of a non-magnetic phase with orientational ordering.
We investigated the chemical pressure effects on structural and electronic properties of SnTe-based material using partial substitution of Sn by Ag0.5Bi0.5, which results in lattice shrinkage. For Sn1-2x(AgBi)xTe, single-phase polycrystalline samples were obtained with a wide range of x. On the basis of band calculations, we confirmed that the Sn1-2x(AgBi)xTe system is basically possessing band inversion and topologically preserved electronic states. To explore new superconducting phases related to the topological electronic states, we investigated the In-doping effects on structural and superconducting properties for x = 0.33 (AgSnBiTe3). For (AgSnBi)(1-y)/3InyTe, single-phase polycrystalline samples were obtained for y = 0-0.5 by high-pressure synthesis. Superconductivity was observed for y = 0.2-0.5. For y = 0.4, specific heat investigation confirmed the emergence of bulk superconductivity. Because the parameters obtained from specific heat analyses were comparable to In-doped SnTe, we expect that the (AgSnBi)(1-y)/3InyTe and other (Ag,In,Sn,Bi)Te phases are a candidate system for studying topological superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا