ترغب بنشر مسار تعليمي؟ اضغط هنا

The solar chromosphere at high resolution with IBIS: III. Comparison of Ca II K and Ca II 854.2 nm imaging

555   0   0.0 ( 0 )
 نشر من قبل Kevin Reardon
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Filtergrams obtained in Ca II H, Ca II K and H-alpha are often employed as diagnostics of the solar chromosphere. However, the vastly disparate appearance between the typical filtergrams in these different lines calls into question the nature of what is actually being observed. We investigate the lack of obvious structures of magnetic origin such as fibrils and mottles in on-disk Ca II H and K images by directly comparing a temporal sequence of classical Ca II K filtergrams with a co-spatial and co-temporal sequence of spectrally resolved Ca II 854.2 images obtained with the Interferometric Bidimensional Spectrometer (IBIS), considering the effect of both the spectral and spatial smearing. We find that the lack of fine magnetic structuring in Ca II K filtergrams, even with the narrowest available filters, is due to observational effects. Signatures of fibrils remain however in the temporal evolution of the filtergrams, in particular with the evidence of magnetic shadows around the network elements. The Ca II K filtergrams do not appear, however, to properly reflect the high-frequency behavior of the chromosphere. Using the same analysis, we find no significant chromospheric signature in the Hinode/SOT Ca II H quiet-Sun filtergrams. The picture provided by H-alpha and Ca II 854.2, which show significant portions of the chromosphere dominated by magnetic structuring, appears to reflect the true and essential nature of the solar chromosphere. Data which do not resolve, spatially or spectrally, this aspect may misrepresent the behavior the chromosphere.



قيم البحث

اقرأ أيضاً

(Abridged) Aims: In this paper, we seek to establish the suitability of imaging spectroscopy performed in the Ca II 854.2 nm line as a means to investigate the solar chromosphere at high resolution. Methods: We utilize monochromatic images obtain ed with the Interferometric BIdimensional Spectrometer (IBIS) at multiple wavelengths within the Ca II 854.2 nm line and over several quiet areas. We analyze both the morphological properties derived from narrow-band monochromatic images and the average spectral properties of distinct solar features such as network points, internetwork areas and fibrils. Results: The spectral properties derived over quiet-Sun targets are in full agreement with earlier results obtained with fixed-slit spectrographic observations, highlighting the reliability of the spectral information obtained with IBIS. Furthermore, the very narrowband IBIS imaging reveals with much clarity the dual nature of the Ca II 854.2 nm line: its outer wings gradually sample the solar photosphere, while the core is a purely chromospheric indicator. The latter displays a wealth of fine structures including bright points, akin to the Ca II H2V and K2V grains, as well as fibrils originating from even the smallest magnetic elements. The fibrils occupy a large fraction of the observed field of view even in the quiet regions, and clearly outline atmospheric volumes with different dynamical properties, strongly dependent on the local magnetic topology. This highlights the fact that 1-D models stratified along the vertical direction can provide only a very limited representation of the actual chromospheric physics.
(Abridged) Aims: We characterize the dynamics of the quiet inter-network chromosphere by studying the occurrence of acoustic shocks and their relation with the concomitant photospheric structure and dynamics. Methods: We analyze a comprehensive d ata set that includes high resolution chromospheric and photospheric spectra obtained with the IBIS imaging spectrometer in two quiet-Sun regions. This is complemented by high-resolution sequences of MDI magnetograms of the same targets. From the chromospheric spectra we identify the spatio-temporal occurrence of the acoustic shocks. We compare it with the photospheric dynamics by means of both Fourier and wavelet analysis, and study the influence of magnetic structures. Results: Mid-chromospheric shocks occur as a response to underlying powerful photospheric motions at periodicities nearing the acoustic cut-off, consistent with 1-D hydrodynamical modeling. However, their spatial distribution within the supergranular cells is highly dependent on the local magnetic topology, both at the network and internetwork scale. Large portions of the internetwork regions undergo very few shocks, as shadowed by the horizontal component of the magnetic field. The latter is betrayed by the presence of chromospheric fibrils, observed in the core of the CaII line as slanted structures with distinct dynamical properties. The shadow mechanism appears to operate also on the very small scales of inter-network magnetic elements, and provides for a very pervasive influence of the magnetic field even in the quietest region analyzed.
A dense forest of slender bright fibrils near a small solar active region is seen in high-quality narrowband Ca II H images from the SuFI instrument onboard the Sunrise balloon-borne solar observatory. The orientation of these slender Ca II H fibrils (SCF) overlaps with the magnetic field configuration in the low solar chromosphere derived by magnetostatic extrapolation of the photospheric field observed with Sunrise/IMaX and SDO/HMI. In addition, many observed SCFs are qualitatively aligned with small-scale loops computed from a novel inversion approach based on best-fit numerical MHD simulation. Such loops are organized in canopy-like arches over quiet areas that differ in height depending on the field strength near their roots.
The structure and energy balance of the solar chromosphere remain poorly known. We have used the imaging spectrometer IBIS at the Dunn Solar Telescope to obtain fast-cadence, multi-wavelength profile sampling of Halpha and Ca II 854.2 nm over a sizab le two-dimensional field of view encompassing quiet-Sun network. We provide a first inventory of how the quiet chromosphere appears in these two lines by comparing basic profile measurements in the form of image displays, temporal-average displays, time slices, and pixel-by-pixel correlations. We find that the two lines can be markedly dissimilar in their rendering of the chromosphere, but that, nevertheless, both show evidence of chromospheric heating, particularly in and around network: Halpha in its core width, Ca II 854.2 in its brightness. We discuss venues for improved modeling.
We address the importance of historical full disc Ca II K spectroheliograms for solar activity and irradiance reconstruction studies. We review our work on processing such data to enable them to be used in irradiance reconstructions. We also present our preliminary estimates of the plage areas from five of the longest available historical Ca II K archives.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا