ترغب بنشر مسار تعليمي؟ اضغط هنا

A priori estimate for a family of semi-linear elliptic equations with critical nonlinearity

92   0   0.0 ( 0 )
 نشر من قبل Lei Zhang
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Lei Zhang




اسأل ChatGPT حول البحث

We consider positive solutions of $Delta u-mu u+Ku^{frac{n+2}{n-2}}=0$ on $B_1$ ($nge 5$) where $mu $ and $K>0$ are smooth functions on $B_1$. If $K$ is very sub-harmonic at each critical point of $K$ in $B_{2/3}$ and the maximum of $u$ in $bar B_{1/3}$ is comparable to its maximum over $bar B_1$, then all positive solutions are uniformly bounded on $bar B_{1/3}$. As an application, a priori estimate for solutions of equations defined on $mathbb S^n$ is derived.



قيم البحث

اقرأ أيضاً

Let $Omega subset {mathbb R}^N$ ($N geq 3$) be a $C^2$ bounded domain and $delta$ be the distance to $partial Omega$. We study positive solutions of equation (E) $-L_mu u+ g(| abla u|) = 0$ in $Omega$ where $L_mu=Delta + frac{mu}{delta^2} $, $mu in ( 0,frac{1}{4}]$ and $g$ is a continuous, nondecreasing function on ${mathbb R}_+$. We prove that if $g$ satisfies a singular integral condition then there exists a unique solution of (E) with a prescribed boundary datum $ u$. When $g(t)=t^q$ with $q in (1,2)$, we show that equation (E) admits a critical exponent $q_mu$ (depending only on $N$ and $mu$). In the subcritical case, namely $1<q<q_mu$, we establish some a priori estimates and provide a description of solutions with an isolated singularity on $partial Omega$. In the supercritical case, i.e. $q_muleq q<2$, we demonstrate a removability result in terms of Bessel capacities.
In this paper we deal with the multiplicity of positive solutions to the fractional Laplacian equation begin{equation*} (-Delta)^{frac{alpha}{2}} u=lambda f(x)|u|^{q-2}u+|u|^{2^{*}_{alpha}-2}u, quadtext{in},,Omega, u=0,text{on},,partialOmega, end {equation*} where $Omegasubset mathbb{R}^{N}(Ngeq 2)$ is a bounded domain with smooth boundary, $0<alpha<2$, $(-Delta)^{frac{alpha}{2}}$ stands for the fractional Laplacian operator, $fin C(Omegatimesmathbb{R},mathbb{R})$ may be sign changing and $lambda$ is a positive parameter. We will prove that there exists $lambda_{*}>0$ such that the problem has at least two positive solutions for each $lambdain (0,,,lambda_{*})$. In addition, the concentration behavior of the solutions are investigated.
145 - Penghui Zhang , Zhiqing Han 2021
This paper is concerned with the existence of ground states for a class of Kirchhoff type equation with combined power nonlinearities begin{equation*} -left(a+bint_{mathbb{R}^{3}}| abla u(x)|^{2}right) Delta u =lambda u+|u|^{p-2}u+u^{5}quad text{for some} lambdainmathbb{R},quad xinmathbb{R}^{3}, end{equation*} with prescribed $L^{2}$-norm mass begin{equation*} int_{mathbb{R}^{3}}u^{2}=c^{2} end{equation*} in Sobolev critical case and proves that the equation has a couple of solutions $(u_{c},lambda_{c})in S(c)times mathbb{R}$ for any $c>0$, $a,b >0$ and $frac{14}{3}leq p< 6,$ where $S(c)={uin H^{1}(mathbb{R}^{3}):int_{mathbb{R}^{3}}u^{2}=c^{2}}.$ textbf{Keywords:} Kirchhoff type equation; Critical nonlinearity; Normalized ground states oindent{AMS Subject Classification:, 37L05; 35B40; 35B41.}
203 - Lei Zhang 2008
We consider a sequence of blowup solutions of a two dimensional, second order elliptic equation with exponential nonlinearity and singular data. This equation has a rich background in physics and geometry. In a work of Bartolucci-Chen-Lin-Tarantello it is proved that the profile of the solutions differs from global solutions of a Liouville type equation only by a uniformly bounded term. The present paper improves their result and establishes an expansion of the solutions near the blowup points with a sharp error estimate.
111 - Daniele Garrisi 2011
We prove the existence of positive solutions to a sys- tem of k non-linear elliptic equations corresponding to standing- wave k-uples solutions to a system of non-linear Klein-Gordon equations. Our solutions are characterised by a small energy/charge ratio, appropriately defined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا