ﻻ يوجد ملخص باللغة العربية
I review the development of ideas regarding the angular momentum evolution of solar-type stars, from the early 60s to the most recent years. Magnetic fields are the central agent that dictates the rotational evolution of solar-type stars, both during the pre-main sequence, through star-disk magnetic coupling, and during the main sequence, through magnetized winds. Key theoretical developments as well as important observational results are summarized in this review.
The surface rotation rates of young solar-type stars decrease rapidly with age from the end of the pre-main sequence though the early main sequence. This suggests that there is also an important change in the dynamos operating in these stars, which s
Surface rotation rates of young solar-type stars display drastic changes at the end of the pre-main sequence through the early main sequence. This may trigger corresponding changes in the magnetic dynamos operating in these stars, which ought to be o
The surface rotation rates of young solar-type stars vary rapidly with age from the end of the pre-main sequence through the early main sequence. Important changes in the dynamos operating in these stars may result from this evolution, which should b
We investigate the helium dimer in strong magnetic fields, focusing on the spectrum of low-lying electronic states and their dissociation curves, at the full configuration-interaction level of theory. To address the loss of cylindrical symmetry and a
To better understand the observed distributions of rotation rate and magnetic activity of sun-like and low-mass stars, we derive a physically motivated scaling for the dependence of the stellar-wind torque on Rossby number. The torque also contains a