ترغب بنشر مسار تعليمي؟ اضغط هنا

Identification of Potential Weak Target Radio Quasars for ASTRO-G In-Beam Phase-Referencing

210   0   0.0 ( 0 )
 نشر من قبل Sandor Frey
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We apply an efficient selection method to identify potential weak Very Long Baseline Interferometry (VLBI) target quasars simply using optical (SDSS) and low-resolution radio (FIRST) catalogue data. Our search is restricted to within 12 from known compact radio sources that are detectable as phase-reference calibrators for ASTRO-G at 8.4 GHz frequency. These calibrators have estimated correlated flux density >20 mJy on the longest ground-space VLBI baselines. The search radius corresponds to the primary beam size of the ASTRO-G antenna. We show that ~20 quasars with at least mJy-level expected flux density can be pre-selected as potential in-beam phase-reference targets for ASTRO-G at 8.4 GHz frequency. Most of them have never been imaged with VLBI. The sample of these dominantly weak sources offers a good opportunity to study their radio structures with unprecedented angular resolution provided by Space VLBI. The method of in-beam phase-referencing is independent from the ability of the orbiting radio telescope to do rapid position-switching manoeuvres between the calibrators and the nearby reference sources, and less sensitive to the satellite orbit determination uncertainties.


قيم البحث

اقرأ أيضاً

209 - S. Frey , K.E. Gabanyi 2008
We show that as many as ~50 quasars with at least mJy-level expected flux density can be pre-selected as potential in-beam phase-reference targets for ASTRO-G. Most of them have never been imaged with VLBI. These sources are located around strong, co mpact calibrator sources that have correlated flux density >100 mJy on the longest VLBA baselines at 8.4 GHz. All the targets lie within 12 from the respective reference source. The basis of this selection is an efficient method to identify potential weak VLBI target quasars simply using optical and low-resolution radio catalogue data. The sample of these dominantly weak sources offers a good opportunity for a statistical study of their radio structure with unprecedented angular resolution at 8.4 GHz.
One of the aims of next generation optical interferometric instrumentation is to be able to make use of information contained in the visibility phase to construct high dynamic range images. Radio and optical interferometry are at the two extremes of phase corruption by the atmosphere. While in radio it is possible to obtain calibrated phases for the science objects, in the optical this is currently not possible. Instead, optical interferometry has relied on closure phase techniques to produce images. Such techniques allow only to achieve modest dynamic ranges. However, with high contrast objects, for faint targets or when structure detail is needed, phase referencing techniques as used in radio interferometry, should theoretically achieve higher dynamic ranges for the same number of telescopes. Our approach is not to provide evidence either for or against the hypothesis that phase referenced imaging gives better dynamic range than closure phase imaging. Instead we wish to explore the potential of this technique for future optical interferometry and also because image reconstruction in the optical using phase referencing techniques has only been performed with limited success. We have generated simulated, noisy, complex visibility data, analogous to the signal produced in radio interferometers, using the VLTI as a template. We proceeded with image reconstruction using the radio image reconstruction algorithms contained in AIPS IMAGR (CLEAN algorithm). Our results show that image reconstruction is successful in most of our science cases, yielding images with a 4 milliarcsecond resolution in K band. (abridged)
We present the results of Very Long Baseline Interferometry (VLBI) observations using the phase reference technique to detect weak Active Galactic Nuclei (AGN) cores in the Virgo cluster. Our observations were carried out using the Korean VLBI Networ k (KVN). We have selected eight representative radio galaxies, seven Virgo cluster members and one galaxy (NGC 4261) that is likely to be in the background. The selected galaxies are located in a range of density regions showing various morphology in 1.4 GHz continuum. Since half of our targets are too weak to be detected at K-band we applied a phase referencing technique to extend the source integration time by calibrating atmospheric phase fluctuations. We discuss the results of the phase referencing method at high frequency observations and we compare them with self-calibration on the relatively bright AGNs, such as M87, M84 and NGC 4261. In this manuscript we present the radio intensity maps at 22 GHz of the Virgo cluster sample while we demonstrate for first time the capability of KVN phase referencing technique.
478 - A.Sokolov , T.Cawthorne 2007
We report the results of a phase-referencing study aimed at uncovering precession of the VLBI jet of BL Lac. The observations were conducted at 8, 15, 22, and 43 GHz and consist of seven epochs spanning about two years. We investigated the change in the absolute position of BL Lacs radio core by means of phase-referencing with two nearby sources, 2151+431 and 2207+374. The shift in the position of the core perpendicular to the jet is a signature of precession. However, the periodic variations with an amplitude of ~0.15 mas and a period of 1 year can be attributed to seasonal weather variations. We also detect a trend in position of the core on the scale of ~0.1 mas over two years.
We present radio and X-ray observations, as well as optical light curves, for a subset of 26 BL Lac candidates from the Sloan Digital Sky Survey (SDSS) lacking strong radio emission and with z<2.2. Half of these 26 objects are shown to be stars, gala xies, or absorbed quasars. We conclude that the other 13 objects are Active Galactic Nuclei (AGN) with abnormally weak emission features; ten of those 13 are definitively radio-quiet, and, for those with available optical light curves, their level of optical flux variability is consistent with radio-quiet quasars. We cannot exclude the possibility that some of these 13 AGN lie on the extremely radio-faint tail of the BL Lac distribution, but our study generally supports the notion that all BL Lac objects are radio-loud. These radio-quiet AGN appear to have intrinsically weak or absent broad emission line regions, and, based on their X-ray properties, we argue that some are low-redshift analogs to weak line quasars (WLQs). SDSS BL Lac searches are so far the only systematic surveys of the SDSS database capable of recovering such exotic low-redshift WLQs. There are 71 more z<2.2 radio-quiet BL Lac candidates already identified in the SDSS not considered here, and many of those might be best unified with WLQs as well. Future studies combining low- and high-redshift WLQ samples will yield new insight on our understanding of the structure and formation of AGN broad emission line regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا