ترغب بنشر مسار تعليمي؟ اضغط هنا

Bounds on new light particles from high-energy and very small momentum transfer np elastic scattering data

77   0   0.0 ( 0 )
 نشر من قبل Jeffrey Tithof
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We found that spin-one new light particle exchanges are strongly bounded by high-energy and small momentum transfer np elastic scattering data; the analogous bound for a scalar particle is considerably weaker, while for a pseudoscalar particle no bounds can be set. These bounds are compared with the bounds extracted from low-energy n-Pb scattering experiments and from the bounds of pi0 and K+ meson decays.

قيم البحث

اقرأ أيضاً

A method of determination of the real part of the elastic scattering amplitude is examined for high energy proton-proton and proton-nuclei elastic scattering at small momentum transfer. The method allows to decrease the number of model assumptions, t o obtain the real parts of the spin non-flip and spin-flip amplitudes in the narrow region of momentum transfer.
Within the Minimal Supersymmetric Standard Model (MSSM) we systematically investigate the bounds on the mass of the lightest neutralino. We allow for non-universal gaugino masses and thus even consider massless neutralinos, while assuming in general that R-parity is conserved. Our main focus are laboratory constraints. We consider collider data, precision observables, and also rare meson decays to very light neutralinos. We then discuss the astrophysical and cosmological implications. We find that a massless neutralino is allowed by all existing experimental data and astrophysical and cosmological observations.
We present new constraints on three different models, the so-called universal, $B-L$ and $L_mu-L_tau$ models, involving a yet to be observed light vector $Z$ mediator, by exploiting the recent observation of coherent elastic neutrino-nucleus scatteri ng (CE$ u$NS) in argon and cesium-iodide performed by the COHERENT Collaboration. We compare the results obtained from a combination of the above data sets with the limits derived from searches in fixed target, accelerator, solar neutrino and reactor CE$ u$NS experiments, and with the parameter region that could explain the anomalous magnetic moment of the muon. We show that for the universal and the $B-L$ models, the COHERENT data allow us to put stringent limits in the light vector mediator mass, $M_{Z}$, and coupling, $g_{Z}$, parameter space.
It has been recently claimed by two different groups that the spectral modulation observed in gamma rays from Galactic pulsars and supernova remnants can be due to conversion of photons into ultra-light axion-like-particles (ALPs) in large-scale Gala ctic magnetic fields. While we show the required best-fit photon-ALP coupling, $g_{agamma} sim 2 times 10^{-10}$ GeV${}^{-1}$, to be consistent with constraints from observations of photon-ALPs mixing in vacuum, this is in conflict with other bounds, specifically from the CAST solar axion limit, from the helium-burning lifetime in globular clusters, and from the non-observations of gamma rays in coincidence with SN 1987A. In order to reconcile these different results, we propose that environmental effects in matter would suppress the ALP production in dense astrophysical plasma, allowing to relax previous bounds and make them compatible with photon-ALP
A new method for the determination of the real part of the elastic scattering amplitude is examined for high energy proton-proton and proton-nuclei elastic scattering at small momentum transfer. This method allows to decrease the number of model assu mptions, to obtain the real part in the narrow region of momentum transfer and to test different models for hadron-nuclei scattering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا