ﻻ يوجد ملخص باللغة العربية
We study the general theory of asymptotically CAT(0) groups, explaining why such a group has finitely many conjugacy classes of finite subgroups, is $F_infty$ and has solvable word problem. We provide techniques to combine asymptotically CAT(0) groups via direct products, amalgams and HNN extensions. The universal cover of the Lie group $PSL(2,mathbb{R})$ is shown to be an asymptotically CAT(0) metric space. Therefore, co-compact lattices in $widetilde{PSL(2,mathbb{R})}$ provide the first examples of asymptotically CAT(0) groups which are neither CAT(0) nor hyperbolic. Another source of examples is shown to be the class of relatively hyperbolic groups.
In this work we introduce a new combinatorial notion of boundary $Re C$ of an $omega$-dimensional cubing $C$. $Re C$ is defined to be the set of almost-equality classes of ultrafilters on the standard system of halfspaces of $C$, endowed with an orde
We show that any split extension of a right-angled Coxeter group $W_{Gamma}$ by a generating automorphism of finite order acts faithfully and geometrically on a $mathrm{CAT}(0)$ metric space.
We discuss a problem posed by Gersten: Is every automatic group which does not contain Z+Z subgroup, hyperbolic? To study this question, we define the notion of n-tracks of length n, which is a structure like Z+Z, and prove its existence in the non-h
We study uniform exponential growth of groups acting on CAT(0) cube complexes. We show that groups acting without global fixed points on CAT(0) square complexes either have uniform exponential growth or stabilize a Euclidean subcomplex. This generali
We study abstract group actions of locally compact Hausdorff groups on CAT(0) spaces. Under mild assumptions on the action we show that it is continuous or has a global fixed point. This mirrors results by Dudley and Morris-Nickolas for actions on tr