ترغب بنشر مسار تعليمي؟ اضغط هنا

Density effect on multi-wavelength luminosities on star formation regions in NGC 3184 and NGC 3938

70   0   0.0 ( 0 )
 نشر من قبل Anah\\'i Cald\\'u Primo
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyzed the regions of star formation in the spiral galaxies NGC 3184 and NGC 3938 from archive images at multiple wavelengths (NUV from GALEX, H-alpha from JKT and KPNO, 8 and 24 um from Spitzer, and CO from BIMA). We used the Clump Find Algorithm to extract the properties of the star forming tracers shown as emission regions at each wavelength. We obtained a power-law relation between the luminosity and the emission region volume that scales as expected, $L proportional to V, for the H-alpha and NUV emission; but much faster for the dust (8 and 24 um) and molecular gas emitting regions in CO. This is interpreted as a change on the emissivity with the size of the cloud, either by an augmentation of the overall density or due to the presence of high density clumps, with high local emissivity coefficients. Although the clumpy nature of molecular gas may not be surprising, the clumpy nature of mid-infrared emission regions, that could be explained by newly formed high to intermediate mass stars embedded into the dust and heating it, is clearly revealed in both galaxies.

قيم البحث

اقرأ أيضاً

Aims. We aim to investigate and characterise the photoionised X-ray emission line regions within NGC 7469. Methods. We apply the photoionisation model, PION, within the spectral fitting code SPEX to analyse the 640 ks RGS spectrum of NGC 7469 gathere d during an XMM-Newton observing campaign in 2015. Results. We find the emission line region in NGC 7469 to be multiphased, consisting of two narrow components with ionisation parameters of $log xi = 0.4$ and 1.6. A third, broad emission component, with a broadening velocity of $v_b sim 1400$ km stextsuperscript{-1} and an outflow velocity of $v_{out} sim -4500$ km stextsuperscript{-1}, is required to fit the residuals in the O VII triplet, at around 22 AA. Assuming a volume filling factor of 0.1, the lower distance limits of the narrow emission line region components are estimated for the first time at 2.6 and 2.5 pc from the central black hole, whereas the broad component has an estimated lower bound distance between 0.004 to 0.03 pc, depending on the assumed plasma parameters. The collisionally ionised plasma from the star burst region in NGC 7469 has a plasma temperature of 0.32 keV and outflow velocity of $-280$ km stextsuperscript{-1}, consistent with previous results in this campaign. In addition, we model the photoionised plasma of the warm absorber (WA) in NGC 7469, and find that it consists of three photoionised phases, with different values of $xi$, $N_H$ and $v_{out}$. The upper bound distances of these WA components are 1.9, 0.3 and 0.6 pc, respectively, consistent with archival results. Conclusions. The environment of NGC 7469 is a complex mix of plasma winds absorbing and emitting X-rays. We find the picture painted by our results can be attributed to line emitting plasma located at distances ranging from near the black hole to the torus and beyond the ionised outflows.
We present the results of $^{12}$CO($J$=1-0) and $^{13}$CO($J$=1-0) simultaneous mappings toward the nearby barred spiral galaxy NGC 4303 as a part of the CO Multi-line Imaging of Nearby Galaxies (COMING) project. Barred spiral galaxies often show lo wer star-formation efficiency (SFE) in their bar region compared to the spiral arms. In this paper, we examine the relation between the SFEs and the volume densities of molecular gas $n(rm{H}_2)$ in the eight different regions within the galactic disk with CO data combined with archival far-ultraviolet and 24 $mu$m data. We confirmed that SFE in the bar region is lower by 39% than that in the spiral arms. Moreover, velocity-alignment stacking analysis was performed for the spectra in the individual regions. The integrated intensity ratios of $^{12}$CO to $^{13}$CO ($R_{12/13}$) range from 10 to 17 as the results of stacking. Fixing a kinetic temperature of molecular gas, $n(rm{H}_2)$ was derived from $R_{12/13}$ via non-local thermodynamic equilibrium (non-LTE) analysis. The density $n(rm{H}_2)$ in the bar is lower by 31-37% than that in the arms and there is a rather tight positive correlation between SFEs and $n(rm{H}_2)$, with a correlation coefficient of $sim 0.8$. Furthermore, we found a dependence of $n(rm{H}_2)$ on the velocity dispersion of inter-molecular clouds ($Delta V/ sin i$). Specifically, $n(rm{H}_2)$ increases as $Delta V/ sin i$ increases when $Delta V/ sin i < 100$ km s$^{-1}$. On the other hand, $n(rm{H}_2)$ decreases as $Delta V/ sin i$ increases when $Delta V/ sin i > 100$ km s$^{-1}$. These relations indicate that the variations of SFE could be caused by the volume densities of molecular gas, and the volume densities could be governed by the dynamical influence such as cloud-cloud collisions, shear and enhanced inner-cloud turbulence.
Gas infall and outflow are critical for determining the star formation rate and chemical evolution of galaxies but direct measurements of gas flows are diffcult to make. Young massive stars and HII regions in the halos of galaxies are potential trace rs for accretion and/or outflows of gas. Gas phase abundances of three HII regions in the lower halos of the edge-on galaxies NGC 3628 and NGC 4522 are determined by analysing optical long-slit spectra. The observed regions have projected distances to the midplane of their host from 1.4 to 3 kpc. With the measured flux densities of the optical nebular emission lines, we derive the oxygen abundance 12 + log(O/H) for the three extraplanar HII regions. The analysis is based on one theoretical and two empirical strong-line calibration methods. The resulting oxygen abundances of the extraplanar HII regions are comparable to the disk HII regions in one case and a little lower in the other case. Since our results depend on the accuracy of the metallicity determinations, we critically discuss the difference of the calibration methods we applied and confirm previously noted offsets. From our measurements, we argue that these three extraplanar HII regions were formed in the disk or at least from disk material. We discuss the processes that could transport disk material into the lower halo of these systems and conclude that gravitational interaction with a companion galaxy is most likely for NGC 3628 while ram pressure is favoured in the case of NGC 4522.
We present the results from an optical study of the stellar & star formation properties of NGC 925 using the WIYN 3.5m telescope. Images in B,V,R, & H-alpha reveal a galaxy that is fraught with asymmetries. From isophote fits we discover that the bar center is not coincident with the center of the outer isophotes nor with the dynamical center (from Pisano et al. 1998). Cuts across the spiral arms reveal that the northern arms are distinctly different from the southern arm. The southern arm not only appears more coherent, but the peaks in stellar and H-alpha emission are found to be coincident with those of the HI distribution, while no such consistency is present in the northern disk. We also examine the gas surface density criterion for massive star formation in NGC 925, and find that its behavior is more consistent with that for irregular galaxies, than with late-type spirals. In particular, star formation persists beyond the radius at which the gas surface density falls below the predicted critical value for star formation for late-type spirals. Such properties are characteristic of Magellanic spirals, but are present at a less dramatic level in NGC 925, a late-type spiral.
111 - A. Pasquali 2003
We have made use of archival HST BVIJH photometry to constrain the nature of the three discrete sources, A1, A2 and B1, identified in the double nucleus of NGC 6240. STARBURST99 models have been fitted to the observed colours, under the assumption, f irst, that these sources can be treated as star clusters (i.e. single, instantaneous episodes of star formation), and subsequently as star-forming regions (i.e. characterised by continuous star formation). For both scenarios, we estimate ages as young as 4 million years, integrated masses ranging between 7x10^6 Msun (B1) and 10^9 Msun (A1) and a rate of 1 supernova per year, which, together with the stellar winds, sustains a galactic wind of 44 Msun/yr. In the case of continuous star formation, a star-formation rate has been derived for A1 as high as 270 Msun/yr, similar to what is observed for warm Ultraluminous Infrared Galaxies (ULIRGs) with a double nucleus. The A1 source is characterised by a mass density of about 1200 Msun/pc^3 which resembles the CO molecular mass density measured in cold ULIRGs and the stellar density determined in ``elliptical core galaxies. This, together with the recent discovery of a supermassive binary black hole in the double nucleus of NGC 6240, might indicate that the ongoing merger could shape the galaxy into a core elliptical.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا