ترغب بنشر مسار تعليمي؟ اضغط هنا

The Enlightened Game of Life

219   0   0.0 ( 0 )
 نشر من قبل Claudio Conti
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Claudio Conti




اسأل ChatGPT حول البحث

We investigate a special class of cellular automata (CA) evolving in a environment filled by an electromagnetic wave. The rules of the Conways Game of Life are modified to account for the ability to retrieve life-sustenance from the field energy. Light-induced self-structuring and self-healing abilities and various dynamic phases are displayed by the CA. Photo-driven genetic selection and the nonlinear feedback of the CA on the electromagnetic field are included in the model, and there are evidences of self-organized light-localization processes. The evolution of the electromagnetic field is based on the Finite Difference Time Domain (FDTD) approach. Applications are envisaged in evolutionary biology, artificial life, DNA replication, swarming, optical tweezing and field-driven soft-matter.



قيم البحث

اقرأ أيضاً

We investigate the quantum dynamics of a spin chain that implements a quantum analog of Conways game of life. We solve the time-dependent Schrodinger equation starting with initial separable states and analyse the evolution of quantum correlations ac ross the lattice. We report examples of evolutions leading to all-entangled chains and/or to time oscillating entangling structures and characterize them by means of entanglement and network measures. The quantum patterns result to be quite different from the classical ones, even in the dynamics of local observables. A peculiar instance is a structure behaving as the quantum analog of a blinker, but that has no classical counterpart.
We introduce a quantum version of the Game of Life and we use it to study the emergence of complexity in a quantum world. We show that the quantum evolution displays signatures of complex behaviour similar to the classical one, however a regime exist s, where the quantum Game of Life creates more complexity, in terms of diversity, with respect to the corresponding classical reversible one.
We study the game of go from a complex network perspective. We construct a directed network using a suitable definition of tactical moves including local patterns, and study this network for different datasets of professional tournaments and amateur games. The move distribution follows Zipfs law and the network is scale free, with statistical peculiarities different from other real directed networks, such as e. g. the World Wide Web. These specificities reflect in the outcome of ranking algorithms applied to it. The fine study of the eigenvalues and eigenvectors of matrices used by the ranking algorithms singles out certain strategic situations. Our results should pave the way to a better modelization of board games and other types of human strategic scheming.
We use a stochastic Markovian dynamics approach to describe the spreading of vector-transmitted diseases, like dengue, and the threshold of the disease. The coexistence space is composed by two structures representing the human and mosquito populatio ns. The human population follows a susceptible-infected-recovered (SIR) type dynamics and the mosquito population follows a susceptible-infected-susceptible (SIS) type dynamics. The human infection is caused by infected mosquitoes and vice-versa so that the SIS and SIR dynamics are interconnected. We develop a truncation scheme to solve the evolution equations from which we get the threshold of the disease and the reproductive ratio. The threshold of the disease is also obtained by performing numerical simulations. We found that for certain values of the infection rates the spreading of the disease is impossible whatever is the death rate of infected mosquito.
We present a general framework for the study of coevolution in dynamical systems. This phenomenon consists of the coexistence of two dynamical processes on networks of interacting elements: node state change and rewiring of links between nodes. The p rocess of rewiring is described in terms of two basic actions: disconnection and reconnection between nodes, both based on a mechanism of comparison of their states. We assume that the process of rewiring and node state change occur with probabilities Pr and Pc respectively, independent of each other. The collective behavior of a coevolutionary system can be characterized on the space of parameters (Pr, Pc). As an application, for a voterlike node dynamics we find that reconnections between nodes with similar states lead to network fragmentation. The critical boundaries for the onset of fragmentation in networks with different properties are calculated on this space. We show that coevolution models correspond to curves on this space describing functional relations between Pr and Pc. The occurrence of a one-large-domain phase and a fragmented phase in the network is predicted for diverse models, and agreement is found with some earlier results. The collective behavior of system is also characterized on the space of parameters for the disconnection and reconnection actions. In a region of this space, we find a behavior where different node states can coexist for very long times on one large, connected network.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا