ترغب بنشر مسار تعليمي؟ اضغط هنا

First Results from the Lick AGN Monitoring Project: The Mass of the Black Hole in Arp 151

92   0   0.0 ( 0 )
 نشر من قبل Misty Bentz
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Misty C. Bentz




اسأل ChatGPT حول البحث

We have recently completed a 64-night spectroscopic monitoring campaign at the Lick Observatory 3-m Shane telescope with the aim of measuring the masses of the black holes in 13 nearby (z < 0.05) Seyfert 1 galaxies with expected masses in the range ~10^6-10^7 M_sun. We present here the first results from this project -- the mass of the central black hole in Arp 151. Strong variability throughout the campaign led to an exceptionally clean Hbeta lag measurement in this object of 4.25(+0.68/-0.66) days in the observed frame. Coupled with the width of the Hbeta emission line in the variable spectrum, we determine a black hole mass of (7.1 +/- 1.2)x10^6 M_sun, assuming the Onken et al. normalization for reverberation-based virial masses. We also find velocity-resolved lag information within the Hbeta emission line which clearly shows infalling gas in the Hbeta-emitting region. Further detailed analysis may lead to a full model of the geometry and kinematics of broad line region gas around the central black hole in Arp 151.

قيم البحث

اقرأ أيضاً

96 - Misty C. Bentz 2010
We present velocity-delay maps for optical H I, He I, and He II recombination lines in Arp 151, recovered by fitting a reverberation model to spectrophotometric monitoring data using the maximum-entropy method. H I response is detected over the range 0-15 days, with the response confined within the virial envelope. The Balmer-line maps have similar morphologies but exhibit radial stratification, with progressively longer delays for Hgamma to Hbeta to Halpha. The He I and He II response is confined within 1-2 days. There is a deficit of prompt response in the Balmer-line cores but strong prompt response in the red wings. Comparison with simple models identifies two classes that reproduce these features: freefalling gas, and a half-illuminated disk with a hotspot at small radius on the receding lune. Symmetrically illuminated models with gas orbiting in an inclined disk or an isotropic distribution of randomly inclined circular orbits can reproduce the virial structure but not the observed asymmetry. Radial outflows are also largely ruled out by the observed asymmetry. A warped-disk geometry provides a physically plausible mechanism for the asymmetric illumination and hotspot features. Simple estimates show that a disk in the broad-line region of Arp 151 could be unstable to warping induced by radiation pressure. Our results demonstrate the potential power of detailed modeling combined with monitoring campaigns at higher cadence to characterize the gas kinematics and physical processes that give rise to the broad emission lines in active galactic nuclei.
106 - Misty C. Bentz 2009
We have recently completed a 64-night spectroscopic monitoring campaign at the Lick Observatory 3-m Shane telescope with the aim of measuring the masses of the black holes in 12 nearby (z < 0.05) Seyfert 1 galaxies with expected masses in the range ~ 10^6-10^7 M_sun and also the well-studied nearby active galactic nucleus (AGN) NGC 5548. Nine of the objects in the sample (including NGC 5548) showed optical variability of sufficient strength during the monitoring campaign to allow for a time lag to be measured between the continuum fluctuations and the response to these fluctuations in the broad Hbeta emission. We present here the light curves for the objects in this sample and the subsequent Hbeta time lags for the nine objects where these measurements were possible. The Hbeta lag time is directly related to the size of the broad-line region, and by combining the lag time with the measured width of the Hbeta emission line in the variable part of the spectrum, we determine the virial mass of the central supermassive black hole in these nine AGNs. The absolute calibration of the black hole masses is based on the normalization derived by Onken et al. We also examine the time lag response as a function of velocity across the Hbeta line profile for six of the AGNs. The analysis of four leads to ambiguous results with relatively flat time lags as a function of velocity. However, SBS 1116+583A exhibits a symmetric time lag response around the line center reminiscent of simple models for circularly orbiting broad-line region (BLR) clouds, and Arp 151 shows an asymmetric profile that is most easily explained by a simple gravitational infall model. Further investigation will be necessary to fully understand the constraints placed on physical models of the BLR by the velocity-resolved response in these objects.
The Lick AGN Monitoring Project 2011 observing campaign was carried out over the course of 11 weeks in Spring 2011. Here we present the first results from this program, a measurement of the broad-line reverberation lag in the Seyfert 1 galaxy Mrk 50. Combining our data with supplemental observations obtained prior to the start of the main observing campaign, our dataset covers a total duration of 4.5 months. During this time, Mrk 50 was highly variable, exhibiting a maximum variability amplitude of a factor of 4 in the U-band continuum and a factor of 2 in the H-beta line. Using standard cross-correlation techniques, we find that H-beta and H-gamma lag the V-band continuum by tau_cen = 10.64(-0.93,+0.82) and 8.43(-1.28,+1.30) days, respectively, while the lag of He II 4686 is unresolved. The H-beta line exhibits a symmetric velocity-resolved reverberation signature with shorter lags in the high-velocity wings than in the line core, consistent with an origin in a broad-line region dominated by orbital motion rather than infall or outflow. Assuming a virial normalization factor of f=5.25, the virial estimate of the black hole mass is (3.2+-0.5)*10^7 solar masses. These observations demonstrate that Mrk 50 is among the most promising nearby active galaxies for detailed investigations of broad-line region structure and dynamics.
We present models of the H$beta$-emitting broad-line region (BLR) in seven Seyfert 1 galaxies from the Lick AGN (Active Galactic Nucleus) Monitoring Project 2011 sample, drawing inferences on the BLR structure and dynamics as well as the mass of the central supermassive black hole. We find that the BLR is generally a thick disk, viewed close to face-on, with preferential emission back toward the ionizing source. The dynamics in our sample range from near-circular elliptical orbits to inflowing or outflowing trajectories. We measure black hole masses of $log_{10}(M_{rm BH}/M_odot) = 6.48^{+0.21}_{-0.18}$ for PG 1310$-$108, $7.50^{+0.25}_{-0.18}$ for Mrk 50, $7.46^{+0.15}_{-0.21}$ for Mrk 141, $7.58^{+0.08}_{-0.08}$ for Mrk 279, $7.11^{+0.20}_{-0.17}$ for Mrk 1511, $6.65^{+0.27}_{-0.15}$ for NGC 4593, and $6.94^{+0.14}_{-0.14}$ for Zw 229$-$015. We use these black hole mass measurements along with cross-correlation time lags and line widths to recover the scale factor $f$ used in traditional reverberation mapping measurements. Combining our results with other studies that use this modeling technique, bringing our sample size to 16, we calculate a scale factor that can be used for measuring black hole masses in other reverberation mapping campaigns. When using the root-mean-square (rms) spectrum and using the line dispersion to measure the line width, we find $log_{10}(f_{{rm rms},sigma})_{rm pred} = 0.57 pm 0.19$. Finally, we search for correlations between $f$ and other AGN and BLR parameters and find marginal evidence that $f$ is correlated with $M_{rm BH}$ and the BLR inclination angle, but no significant evidence of a correlation with the AGN luminosity or Eddington ratio.
The prominent broad Fe II emission blends in the spectra of active galactic nuclei have been shown to vary in response to continuum variations, but past attempts to measure the reverberation lag time of the optical Fe II lines have met with only limi ted success. Here we report the detection of Fe II reverberation in two Seyfert 1 galaxies, NGC 4593 and Mrk 1511, based on data from a program carried out at Lick Observatory in Spring 2011. Light curves for emission lines including H-beta and Fe II were measured by applying a fitting routine to decompose the spectra into several continuum and emission-line components, and we use cross-correlation techniques to determine the reverberation lags of the emission lines relative to V-band light curves. In both cases the measured lag (t_cen) of Fe II is longer than that of H-beta, although the inferred lags are somewhat sensitive to the choice of Fe II template used in the fit. For spectral decompositions done using the Fe II template of Veron-Cetty et al. (2004), we find t_cen(Fe II)/t_cen(H-beta) = 1.9+-0.6 in NGC 4593 and 1.5+-0.3 in Mrk 1511. The detection of highly correlated variations between Fe II and continuum emission demonstrates that the Fe II emission in these galaxies originates in photoionized gas, located predominantly in the outer portion of the broad-line region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا