ﻻ يوجد ملخص باللغة العربية
The objective of this paper is to share our enthusiasm for optical pumping experiments and to encourage their use in researches on practical physics. The experimental technique has been well developed and the apparatus sophisticated, but, by paying attention to a few details, reliable operation can be repeated. Some theoretical principles for optical pumping are also introduced and they can be demonstrated experimentally.
In this article the propagation of pointlike event probabilities in space is considered. Double-Slit experiment is described in detail. New interpretation of Quantum Theory is formulated.
We present a review of the latest developments in 1D OWT. Based on an original experimental setup that allows for the implementation of 1D OWT, we are able to show that an inverse cascade occurs through the spontaneous evolution of the nonlinear fiel
Given an experimental set-up and a fixed number of measurements, how should one take data in order to optimally reconstruct the state of a quantum system? The problem of optimal experiment design (OED) for quantum state tomography was first broached
The simultaneity framework describes the relativistic interaction of time with space. The two major proposed simultaneity frameworks are differential simultaneity, in which time is offset with distance in moving or rotating frames for each stationary
A new optical pumping scheme is presented that uses incoherent Raman transitions to prepare a trapped Cesium atom in a specific Zeeman state within the 6S_{1/2}, F=3 hyperfine manifold. An important advantage of this scheme over existing optical pump